DOI QR코드

DOI QR Code

DSRC와 TCS 정보를 이용한 고속도로 경로통행시간 예측

Forecasting of Motorway Path Travel Time by Using DSRC and TCS Information

  • 장현호 (서울대학교) ;
  • 윤병조 (인천대학교 도시과학대학 도시공학과)
  • 투고 : 2017.09.11
  • 심사 : 2017.11.17
  • 발행 : 2017.12.01

초록

출발지 기준 고속도로 경로 통행시간(PTTDP)은 첨단여행자정보시스템(ATIS)의 핵심 정보이다. 이러한 필요성에도 불구하고, 지능형교통체계(ITS)의 예측분야에서 PTTDP에 대한 연구는 성공적으로 극복해야할 핵심 도전과제중 하나로 남아있는 상태이다. 이러한 문제점을 효과적으로 극복하기 위하여, 본 연구에서는 고속도로 IC간 경로통행시간을 동적으로 예측하는 방법론을 제시하고자 한다. 제안된 모형은 고속도로망에서 TG의 교통수요와 TG간 출발지기준 경로통행시간간의 관계를 기반으로 개발되었다. 모형의 입력 자료로(TCS로 수집되는) 통행수요와(DSRC로 수집되는) 경로통행시간 자료가 이용되었다. 개발 모형은 고속도로 정보시스템에 탑재/운영하기 위하여 Data Ming 기법중 연산속도가 빠른 k-최근린 이웃을 이용하였다. 실제 자료를 이용한 적용 실험에서, 제안된 모형은 예측의 신뢰성과 연산수행속도 측면에서 ATIS에 적용이 가능한 수준의 성능을 보였다.

Path travel time based on departure time (PTTDP) is key information in advanced traveler information systems (ATIS). Despite the necessity, forecasting PTTDP is still one of challenges which should be successfully conquered in the forecasting area of intelligent transportation systems (ITS). To address this problem effectively, a methodology to dynamically predict PTTDP between motorway interchanges is proposed in this paper. The method was developed based on the relationships between traffic demands at motorway tollgates and PTTDPs between TGs in the motorway network. Two different data were used as the input of the model: traffic demand data and path travel time data are collected by toll collection system (TCS) and dedicated short range communication (DSRC), respectively. The proposed model was developed based on k-nearest neighbor, one of data mining techniques, in order for the real applications of motorway information systems. In a feasible test with real-world data, the proposed method performed effectively by means of prediction reliability and computational running time to the level of real application of current ATIS.

키워드

참고문헌

  1. Chang, H. H., Lee, Y. I., Yoon, B. J. and Baek, S. G. (2012a). "Dynamic Near-Term Traffic Flow Prediction: System-Oriented Approach Based on Past Experiences." IET Intelligent Transport Systems, Vol. 6, No. 3, pp. 292-305. https://doi.org/10.1049/iet-its.2011.0123
  2. Chang, H. H., Park, D. J., Lee, S. J., Lee, H. S. and Baek, S. G. (2010). "Dynamic Multi-Interval Bus Travel Time Prediction using Bus Transit Data." Transportmetrica, Vol. 6, No. 1, pp. 19-38. https://doi.org/10.1080/18128600902929591
  3. Chang, H. H., Park, D. J., Lee, Y. I. and Yoon, B. J. (2012b). "Multiple Time Period Imputation Technique for Multiple Missing Traffic Variables: Nonparametric Regression Approach." Canadian Journal of Civil Engineering, Vol. 39, pp. 448-459. https://doi.org/10.1139/l2012-018
  4. Davis, G. and Nihan, N. (1991). "Nonparametric Regression and Short-Term Freeway Traffic Forecasting." Journal of Transportation Engineering, Vol. 117, No. 2, pp. 178-188. https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)
  5. Karlsson, M. and Yakowitz, S. (1987). "Rainfall-Runoff Forecasting Methods, Old and New." Stochastic Hydrology and Hydraulics, Vol. 1, No. 4, pp. 303-318. https://doi.org/10.1007/BF01543102
  6. Mulhern, F. J. and Caprara, R. J. (1994). "A Nearest Neighbor Model for Forecasting Market Response." International Journal of Forecasting, Vol. 10, No. 2, pp. 191-207. https://doi.org/10.1016/0169-2070(94)90002-7
  7. Namkoong, S. (2005). "Progressive Interative Forward and Backward (PIFAB) Search Method to Estimate Path-Travel Time on Freeways Unsing Toll Collection System Data." Journal of Korean Society of Transportation, Vol. 20, No. 5, pp. 147-155 (in Korean).
  8. Namkoong, S. and Noh, J. H. (1996). "Development of Optimal-Path Finding System (X-PATH) using Search Space Reduction Technique Based on Expert System." Journal of Korean Society of Transportation, Vol. 14, No. 1, pp. 51-67 (in Korean).
  9. Oswald, R. K., Scherer, W. T. and Smith, B. (2000). "Traffic Flow Forecasting using Approximate Nearest Neighbor Nonparametric Regression." A research project report for U.S. DOT University transportation center.
  10. Qi, Y. and Smith, B. L. (2004). "Identifying Nearest-Neighbors in a Large-Scale Incident Data Archive." Transportation Research Report, 1879, pp. 89-98.
  11. Robinson, P. (1983). "Nonparametric Estimators for Time Series." Journal of Time Series Analysis, Vol. 4, No 3, pp. 185-207. https://doi.org/10.1111/j.1467-9892.1983.tb00368.x
  12. Sim, S. W., Choi, K. C., Lee, S. S. and Namkoong, S. (2013). "An Expressway Path Travel Time Estimation using Hi-pass DSRC Off-Line Travel Data." Journal of Korean Society of Transportation, Vol. 31, No. 3, pp. 45-54 (in Korean). https://doi.org/10.7470/jkst.2013.31.3.045
  13. Smith, B. L., Williams, B. M. and Oswald, R. K. (2002). "Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting." Transportation Research Part C, Vol. 10, No. 4, pp. 303-321. https://doi.org/10.1016/S0968-090X(02)00009-8
  14. Yoon, B. J. and Chang, H. H.(2014). "Potentialities of Data-Driven Nonparametric Regression in Urban Signalized Traffic Flow Forecasting." Journal of Transportation Engineering, Online.