References
- Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. Methods Mol. Biol. 861: 3-30.
- Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414: 313-325. https://doi.org/10.1042/BJ20080305
- Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, et al. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 31: 1846-1859. https://doi.org/10.1016/j.biotechadv.2013.08.006
- Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
- Hui DY, Howles PN. 2002. Carboxyl ester lipase: structurefunction relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43: 2017-2030. https://doi.org/10.1194/jlr.R200013-JLR200
- Holmquist M. 2000. Alpha/beta-hydrolase fold enzymes:structures, functions and mechanisms. Curr. Protein Pept. Sci. 1: 209-235. https://doi.org/10.2174/1389203003381405
- Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
- Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, et al. 2016. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem. Soc. Rev. 45: 6855-6887. https://doi.org/10.1039/C6CS00147E
- Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, et al. 2014. From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed. Res. Int. 2014: 684506.
- Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. 2011. The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis. Gene 477: 1-11. https://doi.org/10.1016/j.gene.2011.01.007
- Lass A, Zimmermann R, Oberer M, Zechner R. 2011. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50: 14-27. https://doi.org/10.1016/j.plipres.2010.10.004
- Arner P, Langin D. 2007. The role of neutral lipases in human adipose tissue lipolysis. Curr. Opin. Lipidol. 18: 246-250. https://doi.org/10.1097/MOL.0b013e32811e16fb
- Lafontan M, Langin D. 2009. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48: 275-297. https://doi.org/10.1016/j.plipres.2009.05.001
- Yeaman SJ. 2004. Hormone-sensitive lipase - new roles for an old enzyme. Biochem. J. 379: 11-22. https://doi.org/10.1042/bj20031811
- Krintel C, Klint C, Lindvall H, Morgelin M, Holm C. 2010. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS One 5: e11193. https://doi.org/10.1371/journal.pone.0011193
- Smith GM, Garton AJ, Aitken A, Yeaman SJ. 1996. Evidence for a multi-domain structure for hormone-sensitive lipase. FEBS Lett. 396: 90-94. https://doi.org/10.1016/0014-5793(96)01076-9
- Osterlund T. 2001. Structure-function relationships of hormone-sensitive lipase. Eur. J. Biochem. 268: 1899-1907. https://doi.org/10.1046/j.1432-1327.2001.02097.x
- Smith AJ, Sanders MA, Juhlmann BE, Hertzel AV, Bernlohr DA. 2008. Mapping of the hormone-sensitive lipase binding site on the adipocyte fatty acid-binding protein (AFABP). Identification of the charge quartet on the AFABP/aP2 helix-turn-helix domain. J. Biol. Chem. 283: 33536-33543. https://doi.org/10.1074/jbc.M806732200
- Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. 2003. Fatty acid-binding protein hormone-sensitive lipase interaction. Fatty acid dependence on binding. J. Biol. Chem. 278: 47636-47643. https://doi.org/10.1074/jbc.M307680200
- Osterlund T, Contreras JA, Holm C. 1997. Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase: apparent residues of the catalytic triad. FEBS Lett. 403: 259-262. https://doi.org/10.1016/S0014-5793(97)00063-X
- Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414: 313-325. https://doi.org/10.1042/BJ20080305
- Langin D, Laurell H, Holst LS, Belfrage P, Holm C. 1993. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc. Natl. Acad. Sci. USA 90: 4897-4901. https://doi.org/10.1073/pnas.90.11.4897
- Feller G, Thiry M, Gerday C. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381-388. https://doi.org/10.1089/dna.1991.10.381
- Reddy PG, Allon R, Mevarech M, Mendelovitz S, Sato Y, Gutnick DL. 1989. Cloning and expression in Escherichia coli of an esterase-coding gene from the oil-degrading bacterium Acinetobacter calcoaceticus RAG-1. Gene 76: 145-152. https://doi.org/10.1016/0378-1119(89)90016-4
- Raibaud A, Zalacain M, Holt TG, Tizard R, Thompson CJ. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454-4463. https://doi.org/10.1128/jb.173.14.4454-4463.1991
- Langin D, Holm C. 1993. Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes. Trends Biochem. Sci. 18: 466-467. https://doi.org/10.1016/0968-0004(93)90007-A
- Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
- Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M. 1998. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem. J. 332: 203-212. https://doi.org/10.1042/bj3320203
- Mizuguchi S, Amada K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 1999. Identification of the gene encoding esterase, a homolog of hormone-sensitive lipase, from an oildegrading bacterium, strain HD-1. J. Biochem. 126: 731-737. https://doi.org/10.1093/oxfordjournals.jbchem.a022510
- Kanaya S, Koyanagi T, Kanaya E. 1998. An esterase from Escherichia coli with a sequence similarity to hormonesensitive lipase. Biochem. J. 332: 75-80. https://doi.org/10.1042/bj3320075
- Manco G, Giosue E, D'Auria S, Herman P, Carrea G, Rossi M. 2000. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch. Biochem. Biophys. 373: 182-192. https://doi.org/10.1006/abbi.1999.1497
- Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300:gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008
- Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, et al. 2004. Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur. J. Biochem. 271: 3953-3961. https://doi.org/10.1111/j.1432-1033.2004.04335.x
- Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE. 2006. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem. 281: 3866-3875. https://doi.org/10.1074/jbc.M505556200
- Delorme V, Diomande SV, Dedieu L, Cavalier JF, Carriere F, Kremer L, et al. 2012. MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormonesensitive lipase family and alters mycobacterial growth. PLoS One 7: e46493. https://doi.org/10.1371/journal.pone.0046493
- Soror SH, Rao R, Cullum J. 2009. Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of Streptomyces coelicolor A3 (2). Protein Eng. Des. Sel. 36: 333-339.
- Sumby KM, Matthews AH, Grbin PR, Jiranek V. 2009. Cloning and characterization of an intracellular esterase from the wine-associated lactic acid bacterium Oenococcus oeni. Appl. Environ. Microbiol. 75: 6729-6735. https://doi.org/10.1128/AEM.01563-09
- Bassegoda A, Fillat A, Pastor FI, Diaz P. 2013. Special Rhodococcus sp. CR-53 esterase Est4 contains a GGG(A)X-oxyanion hole conferring activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 97: 8559-8568. https://doi.org/10.1007/s00253-012-4676-x
- Virk AP, Sharma P, Capalash N. 2011. A new esterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. J. Microbiol. Biotechnol. 21: 667-674. https://doi.org/10.4014/jmb.1103.03008
- Benavente R, Esteban-Torres M, Acebron I, de Las Rivas B, Munoz R, Alvarez Y, et al. 2013. Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1. FEBS J. 280: 6658-6671. https://doi.org/10.1111/febs.12569
-
Alvarez Y, Esteban-Torres M, Cortes-Cabrera A, Gago F, Acebron I, Benavente R, et al. 2014. Esterase LpEst1 from Lactobacillus plantarum: a novel and atypical member of the
${\alpha}$ ${\beta}$ hydrolase superfamily of enzymes. PLoS One 9: e92257. https://doi.org/10.1371/journal.pone.0092257 - Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. 2016. Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role in Xenobiotic degradation. J. Cell. Biochem. 117: 390-401. https://doi.org/10.1002/jcb.25285
- Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, Xie J. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16. https://doi.org/10.1016/j.micres.2016.12.005
- Lin Y, Li Q, Xie L, Xie J. 2017. Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expr. Purif. 129: 143-149. https://doi.org/10.1016/j.pep.2016.04.013
- Dua A, Gupta R. 2017. Functional characterization of hormone-sensitive-like lipase from Bacillus halodurans:synthesis and recovery of pNP-laurate with high yields. Extremophiles DOI: 10.1007/s00792-017-0949-8 [In Press].
- Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726. https://doi.org/10.1007/s00253-004-1722-3
- Rhee JK, Ahn DG, Kim YG, Oh JW. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825. https://doi.org/10.1128/AEM.71.2.817-825.2005
- Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr. Purif. 45: 315-323. https://doi.org/10.1016/j.pep.2005.06.008
- Hong KS, Lim HK, Chung EJ, Park EJ, Lee MH, Kim JC, et al. 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol. 17: 1655-1660.
- Hardeman F, Sjoling S. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524-534. https://doi.org/10.1111/j.1574-6941.2006.00206.x
- Chu X, He H, Guo C, Sun B. 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol. 80: 615-625. https://doi.org/10.1007/s00253-008-1566-3
- Roh C, Villatte F. 2008. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J. Appl. Microbiol. 105: 116-123. https://doi.org/10.1111/j.1365-2672.2007.03717.x
- Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY. 2009. Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase. Biochem. Biophys. Res. Commun. 379: 553-556. https://doi.org/10.1016/j.bbrc.2008.12.085
- Rashamuse K, Ronneburg T, Hennessy F, Visser D, van Heerden E, Piater L, et al. 2009. Discovery of a novel carboxylesterase through functional screening of a preenriched environmental library. J. Appl. Microbiol. 106:1532-1539. https://doi.org/10.1111/j.1365-2672.2008.04114.x
- Bunterngsook B, Kanokratana P, Thongaram T, Tanapongpipat S, Uengwetwanit T, Rachdawong S, et al. 2010. Identification and characterization of lipolytic enzymes from a peatswamp forest soil metagenome. Biosci. Biotechnol. Biochem. 74: 1848-1854. https://doi.org/10.1271/bbb.100249
- Tao W, Lee MH, Yoon MY, Kim JC, Malhotra S, Wu J, et al. 2011. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J. Microbiol. Biotechnol. 21: 1203-1210. https://doi.org/10.4014/jmb.1107.07034
- Ko KC, Rim SO, Han Y, Shin BS, Kim GJ, Choi JH, et al. 2012. Identification and characterization of a novel coldadapted esterase from a metagenomic library of mountain soil. J. Ind. Microbiol. Biotechnol. 39: 681-689. https://doi.org/10.1007/s10295-011-1080-y
- Jiang X, Xu X, Huo Y, Wu Y, Zhu X, Zhang X, et al. 2012. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 194: 207-214. https://doi.org/10.1007/s00203-011-0745-2
- Jeon JH, Lee HS, Kim JT, Kim SJ, Choi SH, Kang SG, et al. 2012. Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl. Microbiol. Biotechnol. 93: 623-631. https://doi.org/10.1007/s00253-011-3433-x
- Biver S, Vandenbol M. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200. https://doi.org/10.1007/s10295-012-1217-7
- Li PY, Ji P, Li CY, Zhang Y, Wang GL, Zhang XY, et al. 2014. Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J. Biol. Chem. 289:19031-19041. https://doi.org/10.1074/jbc.M114.574913
- Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, et al. 2016. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol. Ecol. 92: fiw046. https://doi.org/10.1093/femsec/fiw046
- Petrovskaya LE, Novototskaya-Vlasova KA, Gapizov SS, Spirina EV, Durdenko EV, Rivkina EM. 2016. New member of the hormone-sensitive lipase family from the permafrost microbial community. Bioengineered 7: 1-4 https://doi.org/10.1080/21655979.2016.1153357
- Dukunde A, Schneider D, Lu M, Brady S, Daniel R. 2017. A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol. Lett. 39: 577-587. https://doi.org/10.1007/s10529-016-2282-1
- Ben Ali Y, Chahinian H, Petry S, Muller G, Lebrun R, Verger R, et al. 2006. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 45:14183-14191. https://doi.org/10.1021/bi0613978
- Ascione G, de Pascale D, De Santi C, Pedone C, Dathan NA, Monti SM. 2012. Native expression and purification of hormone-sensitive lipase from Psychrobacter sp. TA144 enhances protein stability and activity. Biochem. Biophys. Res. Commun. 420: 542-546. https://doi.org/10.1016/j.bbrc.2012.03.028
- Alvarez Y, Esteban-Torres M, Acebron I, de las Rivas B, Munoz R, Martinez-Ripoll M, et al. 2011. Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from Lactobacillus plantarum. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 67: 1436-1439. https://doi.org/10.1107/S1744309111036682
- Wei Y, Contreras JA, Sheffield P, Osterlund T, Derewenda U, Kneusel RE, et al. 1999. Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormonesensitive lipase. Nat. Struct. Biol. 6: 340-345. https://doi.org/10.1038/7576
- De Simone G, Galdiero S, Manco G, Lang D, Rossi M, Pedone C. 2000. A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J. Mol. Biol. 303:761-771. https://doi.org/10.1006/jmbi.2000.4195
- De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, et al. 2001. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314: 507-518. https://doi.org/10.1006/jmbi.2001.5152
- Byun JS, Rhee JK, Kim ND, Yoon J, Kim DU, Koh E, et al. 2007. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct. Biol. 7: 47 https://doi.org/10.1186/1472-6807-7-47
- Nam KH, Kim SJ, Priyadarshi A, Kim HS, Hwang KY. 2009. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads. Biochem. Biophys. Res. Commun. 389: 247-250. https://doi.org/10.1016/j.bbrc.2009.08.123
- Angkawidjaja C, Koga Y, Takano K, Kanaya S. 2012. Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. FEBS J. 279: 3071-3084. https://doi.org/10.1111/j.1742-4658.2012.08687.x
- Nam KH, Kim MY, Kim SJ, Priyadarshi A, Kwon ST, Koo BS, et al. 2009. Structural and functional analysis of a novel hormone-sensitive lipase from a metagenome library. Proteins 74: 1036-1040. https://doi.org/10.1002/prot.22313
- Palm GJ, Fernandez-Alvaro E, Bogdanovic X, Bartsch S, Sczodrok J, Singh RK, et al. 2011. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Appl. Microbiol. Biotechnol. 91: 1061-1072. https://doi.org/10.1007/s00253-011-3337-9
- Zheng X, Guo J, Xu L, Li H, Zhang D, Zhang K, et al. 2011. Crystal structure of a novel esterase Rv0045c from Mycobacterium tuberculosis. PLoS One 6: e20506. https://doi.org/10.1371/journal.pone.0020506
- Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, et al. 2013. Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. Acta Crystallogr. D Biol. Crystallogr. 69: 1726-1737. https://doi.org/10.1107/S0907444913013425
- Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y, et al. 2015. Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormonesensitive lipase family. J. Biol. Chem. 290: 11188-11198. https://doi.org/10.1074/jbc.M115.646182
- Huang J, Huo YY, Ji R, Kuang S, Ji C, Xu XW, et al. 2016. Structural insights of a hormone-sensitive lipase homologue Est22. Sci. Rep. 6: 28550. https://doi.org/10.1038/srep28550
-
Rauwerdink A, Kazlauskas RJ. 2015. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of
${\alpha}$ /${\beta}$ -hydrolase fold enzymes. ACS Catal. 5: 6153-6176. https://doi.org/10.1021/acscatal.5b01539 - Marchot P, Chatonnet A. 2012. Enzymatic activity and protein interactions in alpha/beta hydrolase fold proteins:moonlighting versus promiscuity. Protein Pept. Lett. 19:132-143. https://doi.org/10.2174/092986612799080284
-
Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. 2011. Protein engineering of
${\alpha}$ /${\beta}$ -hydrolase fold enzymes. Chembiochem 12: 1508-1517. https://doi.org/10.1002/cbic.201000771 - Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, et al. 2005. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J. Mol. Biol. 345: 501-512. https://doi.org/10.1016/j.jmb.2004.10.035
- Wang J, Shen WJ, Patel S, Harada K, Kraemer FB. 2005. Mutational analysis of the “regulatory module” of hormonesensitive lipase. Biochemistry 44: 1953-1959. https://doi.org/10.1021/bi049206t
- Krintel C, Morgelin M, Logan DT, Holm C. 2009. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276: 4752-4762. https://doi.org/10.1111/j.1742-4658.2009.07172.x
- Sherlin D, Anishetty S. 2015. Mechanistic insights from molecular dynamic simulation of Rv0045c esterase in Mycobacterium tuberculosis. J. Mol. Model. 21: 90. https://doi.org/10.1007/s00894-015-2630-4
- Manco G, Febbraio F, Adinolfi E, Rossi M. 1999. Homology modeling and active-site residues probing of the thermophilic Alicyclobacillus acidocaldarius esterase 2. Protein Sci. 8: 1789-1796. https://doi.org/10.1110/ps.8.9.1789
- Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya, S. 1999. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett. 454: 262-266. https://doi.org/10.1016/S0014-5793(99)00813-3
- Mandrich L, Menchise V, Alterio V, De Simone G, Pedone C, Rossi M, et al. 2008. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Proteins 71: 1721-1731.
- Neves Petersen MT, Fojan P, Petersen SB. How do lipases and esterases work: the electrostatic contribution. J. Biotechnol. 85: 115-147.
- Kourist R, Krishna S, Patel JS, Bartnek F, Hitchman TS, Weiner DP, et al. 2007. Identification of a metagenomederived esterase with high enantioselectivity in the kinetic resolution of arylaliphatic tertiary alcohols. Org. Biomol. Chem. 5: 3310-3313. https://doi.org/10.1039/b709965g
- Rehdorf J, Behrens GA, Nguyen GS, Kourist R, Bornscheuer UT. 2012. Pseudomonas putida esterase contains a GGG(A)Xmotif confering activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 93: 1119-1126. https://doi.org/10.1007/s00253-011-3464-3
- Schiefner A, Gerber K, Brosig A, Boos W. 2014 Structural and mutational analyses of Aes, an inhibitor of MalT in Escherichia coli. Proteins 82: 268-277. https://doi.org/10.1002/prot.24383
- Truongvan N, Chung HS, Jang SH, Lee C. 2016. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site. Extremophiles 20: 187-193. https://doi.org/10.1007/s00792-016-0812-3
- Yuhong Z, Shi P, Liu W, Meng K, Bai Y, Wang G, et al. 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19: 888-897. https://doi.org/10.4014/jmb.0812.695
- Rhee JK, Kim DY, Ahn DG, Yun JH, Jang SH, Shin HC, et al. 2006. Analysis of the thermostability determinants of hyperthermophilic esterase EstE1 based on its predicted three-dimensional structure. Appl. Environ. Microbiol. 72:3021-3025. https://doi.org/10.1128/AEM.72.4.3021-3025.2006
- Pezzullo M, Del Vecchio P, Mandrich L, Nucci R, Rossi M, Manco G. 2013. Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2. Protein Eng. Des. Sel. 26: 47-58. https://doi.org/10.1093/protein/gzs066
- Mandrich L, Merone L, Manco G. 2009. Structural and kinetic overview of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius: a comparison with the other members of the HSL family. Protein Pept. Lett. 16: 1189-1200. https://doi.org/10.2174/092986609789071261
- De Santi C, Tutino ML, Mandrich L, Giuliani M, Parrilli E, Del Vecchio P, et al. 2010. The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie 92: 949-957. https://doi.org/10.1016/j.biochi.2010.04.001
- Manco G, Mandrich L, Rossi M. 2001. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. J. Biol. Chem. 276: 37482-37490. https://doi.org/10.1074/jbc.M103017200
- De Simone G, Mandrich L, Menchise V, Giordano V, Febbraio F, Rossi M, et al. 2004. A substrate-induced switch in the reaction mechanism of a thermophilic esterase: kinetic evidences and structural basis. J. Biol. Chem. 279: 6815-6823. https://doi.org/10.1074/jbc.M307738200
- Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, et al. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16. https://doi.org/10.1016/j.micres.2016.12.005
- Kim S, Joo S, Yoon HC, Ryu Y, Kim KK, Kim TD. 2007. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 63:579-581. https://doi.org/10.1107/S1744309107026152
- Manco G, Carrea G, Giosue E, Ottolina G, Adamo G, Rossi M. 2002. Modification of the enantioselectivity of two homologous thermophilic carboxylesterases from Alicyclobacillus acidocaldarius and Archaeoglobus fulgidus by random mutagenesis and screening. Extremophiles 6: 325-331. https://doi.org/10.1007/s00792-001-0261-4
- Febbraio F, Merone L, Cetrangolo GP, Rossi M, Nucci R, Manco G. 2011. Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal. Chem. 83: 1530-1536. https://doi.org/10.1021/ac102025z
- Pohlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M. 2009. Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens. Bioelectron. 24:2766-2771. https://doi.org/10.1016/j.bios.2009.01.042
- Zhu X, Larsen NA, Basran A, Bruce NC, Wilson IA. 2003. Observation of an arsenic adduct in an acetyl esterase crystal structure. J. Biol. Chem. 278: 2008-2014. https://doi.org/10.1074/jbc.M210103200
Cited by
- Biochemical profiles of two thermostable and organic solvent-tolerant esterases derived from a compost metagenome vol.103, pp.8, 2017, https://doi.org/10.1007/s00253-019-09695-1
- Molecular Characterization of a Novel Cold-Active Hormone-Sensitive Lipase (HaHSL) from Halocynthiibacter Arcticus vol.9, pp.11, 2019, https://doi.org/10.3390/biom9110704
- Crystal structure of PMGL2 esterase from the hormone-sensitive lipase family with GCSAG motif around the catalytic serine vol.15, pp.1, 2017, https://doi.org/10.1371/journal.pone.0226838
- Expression, Characterisation and Homology Modelling of a Novel Hormone-Sensitive Lipase (HSL)-Like Esterase from Glaciozyma antarctica vol.10, pp.1, 2017, https://doi.org/10.3390/catal10010058
- Characterization of a Novel Moderately Thermophilic Solvent-Tolerant Esterase Isolated From a Compost Metagenome Library vol.10, pp.None, 2017, https://doi.org/10.3389/fmicb.2019.03069
- Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain vol.47, pp.2, 2017, https://doi.org/10.1007/s10295-019-02253-8
- Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects vol.27, pp.5, 2017, https://doi.org/10.2174/0929866527666191223141205
- Effect of Cysteine Residue Substitution in the GCSAG Motif of the PMGL2 Esterase Active Site on the Enzyme Properties vol.85, pp.6, 2017, https://doi.org/10.1134/s0006297920060085
- Crystallization and Preliminary X-ray Diffraction Study of a Novel Bacterial Homologue of Mammalian Hormone-Sensitive Lipase (halip1) from Halocynthiibacter arcticus vol.10, pp.11, 2020, https://doi.org/10.3390/cryst10110963
- Structural and Biochemical Characterization of a Cold-Active PMGL3 Esterase with Unusual Oligomeric Structure vol.11, pp.1, 2017, https://doi.org/10.3390/biom11010057
- Biochemical and Structural Characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family vol.19, pp.None, 2017, https://doi.org/10.1016/j.csbj.2021.01.047
- Characterization of a Novel Family IV Esterase Containing a Predicted CzcO Domain and a Family V Esterase with Broad Substrate Specificity from an Oil-Polluted Mud Flat Metagenomic Library vol.11, pp.13, 2017, https://doi.org/10.3390/app11135905
- Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15 vol.11, pp.11, 2017, https://doi.org/10.3390/biom11111552