DOI QR코드

DOI QR Code

ON THE NUMBER OF CYCLIC SUBGROUPS OF A FINITE GROUP

  • Jafari, Mohammad Hossein (Department of Pure Mathematics Faculty of Mathematical Sciences University of Tabriz) ;
  • Madadi, Ali Reza (Department of Pure Mathematics Faculty of Mathematical Sciences University of Tabriz)
  • Received : 2016.09.29
  • Accepted : 2017.02.13
  • Published : 2017.11.30

Abstract

Let G be a finite group and m a divisor of ${\mid}G{\mid}$. We prove that G has at least ${\tau}(m)$ cyclic subgroups whose orders divide m, where ${\tau}(m)$ is the number of divisors of m.

Keywords

References

  1. M. Hall, The Theory of Groups, The Macmillan Company, 1963.
  2. P. Kesava Menon, On the sum $\Sigma$(a-1, n)[(a, n) = 1], J. Indian Math. Soc. 29 (1965), 155-163.
  3. I. M. Richards, A remark on the number of cyclic subgroups of a finite group, Amer. Math. Monthly 91 (1984), no. 9, 571-572. https://doi.org/10.1080/00029890.1984.11971498
  4. W. R. Scott, Group Theory, Dover Publications, Inc., New York, 1987.
  5. B. Sury, Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo 58 (2009), no. 1, 99-108. https://doi.org/10.1007/s12215-009-0010-6
  6. M. Tarnauceanu and L. Toth, Cyclicity degrees of finite groups, Acta Math. Hungar. 145 (2015), no. 2, 489-504. https://doi.org/10.1007/s10474-015-0480-2
  7. L. Toth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino 69 (2011), no. 1, 97-110.