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ON THE NUMBER OF CYCLIC SUBGROUPS

OF A FINITE GROUP

Mohammad Hossein Jafari and Ali Reza Madadi

Abstract. Let G be a finite group and m a divisor of |G|. We prove that
G has at least τ(m) cyclic subgroups whose orders divide m, where τ(m)

is the number of divisors of m.

1. Introduction

Throughout all groups are assumed to be finite. A well known result in group
theory says that a cyclic group of order n has a unique subgroup of order d,
for any divisor d of n, so a cyclic group of order n has exactly τ(n) (necessarily
cyclic) subgroups. A generalization of this result was obtained by Richards
in [3]. He proved that a group of order n has at least τ(n) cyclic subgroups,
and the group is cyclic if and only if it has exactly τ(n) cyclic subgroups. In
this paper we generalize Richards’ result and then classify groups of order n
with τ(n) + 2 subgroups. Also we obtain a generalization of the Kesava Menon
identity [2].

2. Main results

For a group G and a divisor m of |G|, let AG(m) denote the number of
cyclic subgroups of G whose orders divide m and BG(m) denote the number of
solutions in G of the equation xm = 1. Also for any natural number n and any
subset π of prime numbers, we write n = nπnπ′ , where π′ is the complement of π
in prime numbers, and nπ and nπ′ are the π-part and π′-part of n, respectively.

The following theorem shows that there is a close connection between the
arithmetic functions AG and BG. Note that for any n ∈ N, the set {d̄ : 1 ≤
d ≤ n, (d, n) = 1} denoted by U(Zn) is the group of integers modulo n under
multiplication.
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Theorem 2.1. Let G be a group of order n and m a divisor of n. Then

AG(m) =
1

ϕ(n)

∑
d̄∈U(Zn)

BG((m, d− 1)),

where ϕ is the Euler totient function.

Proof. Let Ω denote the set {x ∈ G : xm = 1}. Then, obviously, the group
U(Zn) acts on Ω via x.r̄ = xr, where x ∈ Ω and r̄ ∈ U(Zn). We claim that
x, y ∈ Ω have the same orbits if and only if 〈x〉 = 〈y〉. If x and y have the same
orbits, then, obviously, 〈x〉 = 〈y〉. Conversely, suppose that 〈x〉 = 〈y〉. Hence
there is an r ∈ N such that y = xr and (r, o(x)) = 1. Let π, π1, and π2 be the
set of prime divisors of n, o(x), and r, respectively. It is trivial that π1 ⊆ π and
π1∩π2 = ∅. Now if we let π3 = π− (π1∪π2) and k = nπ1

nπ3
+r, then it is easy

to see that (k, n) = 1 and y = xk. Thus y = x.k̄, as desired. Therefore, by the
claim, the number of the orbits of the action is equal to AG(m), the number of
cyclic subgroups of G whose orders divide m. Now, by the Cauchy-Frobenius
Lemma, we have

AG(m) =
1

ϕ(n)

∑
d̄∈U(Zn)

χ(d̄),

where χ is the permutation character associated with the action. But

χ(d̄) = |{x ∈ Ω : x.d̄ = x}|

= |{x ∈ Ω : xd = x}|

= |{x ∈ G : xm = 1, xd−1 = 1}|

= |{x ∈ G : x(m,d−1) = 1}|
= BG((m, d− 1)),

and the proof is complete. �

The following corollary can be viewed as a generalization of the well-known
Kesava Menon identity [2]. For other generalizations of the Kesava Menon
identity, we refer the reader to [5] and [7].

Corollary 2.2. Let m,n ∈ N and m | n. Then∑
d̄∈U(Zn)

(m, d− 1) = ϕ(n)τ(m).

Proof. Let G be a cyclic group of order n. Since G has a unique (necessarily
cyclic) subgroup of each divisor of n, so G has exactly τ(m) cyclic subgroups
whose orders divide m, hence AG(m) = τ(m). It is also obvious that BG((m, d−
1)) = (m, d − 1) for any d̄ ∈ U(Zn). Now the result follows from the previous
theorem. �
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Before giving another consequence of the above theorem, we will characterize
the set {(m, d− 1) : d̄ ∈ U(Zn)} using the Chinese remainder theorem. In the
following, let π(m) be the set of all prime divisors of the natural number m.
Also let D(m) be the set of all even divisors of m if m is even, and the set of
all divisors of m if m is odd.

Lemma 2.3. Let m,n ∈ N, m | n. Then D(m) = {(m, d− 1) : d̄ ∈ U(Zn)}.

Proof. Let X = {(m, d− 1) : d̄ ∈ U(Zn)}. We consider two cases.
1) Suppose that m is odd. It is clear that X ⊆ D(m). Conversely, we show

that if k ∈ D(m), then k ∈ X. To this end, let σ = π(k), π = π(m), π1 = {2},
and π2 = π′ − π1. Hence σ ⊆ π and n = nπnπ1

nπ2
. Now, by the Chinese

remainder theorem, the following system of linear congruences
kx ≡ 1 (mod nπ2

)
kx ≡ 1 (mod p) if p ∈ π − σ
x ≡ 1 (mod p) if p ∈ σ
x ≡ 0 (mod 2)

has a simultaneous solution, say a. The last congruence says that a is even, so
b = 1+ka is odd. We now show that (b, n) = 1. Assume by way of contradiction
that q is a prime divisor of (b, n), and so q is odd. Also note that q /∈ σ, for
q | 1 + ka. It follows therefore that either q ∈ π2 or q ∈ π − σ. Suppose first
that q ∈ π2. Hence q | nπ2

, and since b ≡ 2 (mod nπ2
) and q | b, we deduce that

q = 2, a contradiction. Suppose now that q ∈ π − σ. Hence b ≡ 2 (mod q), and
since q | b, it then follows that q = 2, again a contradiction. Now we have

(m, b− 1) = (m, ka) = k(
m

k
, a) = k,

where the last equality follows from the second and third congruences of the
above system. Therefore, k ∈ X, and the proof completes.

2) Suppose now that m is even. Hence n is even and consequently X ⊆
D(m). Now we show that if k ∈ D(m), then k ∈ X. To this end, let σ = π(k)
and π = π(m). Hence 2 ∈ σ ⊆ π and n = nπnπ′ . Again, by the Chinese
remainder theorem, the following system of linear congruences kx ≡ 1 (mod nπ′)

kx ≡ 1 (mod p) if p ∈ π − σ
x ≡ 1 (mod p) if p ∈ σ

has a simultaneous solution, say a. Since k is even, so b = 1 + ka is odd. We
now show that (b, n) = 1. Assume by way of contradiction that q is a prime
divisor of (b, n), and so q is odd. Again q /∈ σ for q | 1 + ka. It follows therefore
that either q ∈ π′ or q ∈ π − σ. Suppose first that q ∈ π′. Hence q | nπ′ , and
since b ≡ 2 (mod nπ′) and q | b, we deduce that q = 2, a contradiction. Suppose
now that q ∈ π − σ. Hence b ≡ 2 (mod q), and since q | b, it then follows that
q = 2, again a contradiction. Now we have

(m, b− 1) = (m, ka) = k(
m

k
, a) = k,
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where the last equality follows from the second and third congruences of the
latter system. Therefore, k ∈ X, and the proof is complete. �

There is a classic result in group theory which says that a group G of order
n is cyclic if and only if the number of solutions in G of the equation xd = 1 is
at most d, for any divisor d of n. We generalize this result in the next theorem.

Theorem 2.4. Let G be a group of order n and m a divisor of n. Then the
following are equivalent:

1) G has a unique, and necessarily cyclic, subgroup of order m;
2) the number of solutions in G of the equation xd = 1 is exactly d for

any d ∈ D(m);
3) the number of solutions in G of the equation xd = 1 is at most d for

any d ∈ D(m).

Proof. 1)⇒ 2): Let H be the unique, and necessarily cyclic, subgroup of G of
order m. Let x ∈ G be arbitrary such that xd = 1, where d ∈ D(m). We show
that x ∈ H. To this end, it suffices to show that if P is any Sylow p-subgroup
of 〈x〉, then P ⊆ H. Since normalizers grow in p-groups, so there exists a p-
subgroup Q of G such that P ⊆ Q and |Q| = pa, where m = pas with p - s.
Now if K is the unique subgroup of H of order s, then K is normal in G, so
QK is a subgroup of G of order m. By uniqueness of H, we have H = QK.
Therefore, P ⊆ Q ⊆ H, and the proof is complete.

2)⇒ 3): Trivial.
3) ⇒ 1): First we claim that if m is even, then BG(d) ≤ d for each odd

divisor d of m.
Let d be an arbitrary odd divisor of m. Since BG(2) ≤ 2, so G has a unique

(necessarily central) involution z. Now if yd = 1 for some y ∈ G, then we have
y2d = 1 = (zy)2d and (zy)d 6= 1. Thus if we let C = {x ∈ G : xd = 1} and
D = {x ∈ G : x2d = 1}, then C ∩ zC = ∅, |zC| = |C|, and C ∪ zC ⊆ D. Since
|D| = BG(2d) ≤ 2d, so BG(d) = |C| ≤ d, as desired.

Now we prove that G has a unique subgroup of order m, and that this
subgroup is cyclic. Let p be an arbitrary prime divisor of m such that pa | m
and pa+1 - m. Since G has a p-subgroup of order pa and BG(pa) ≤ pa, so G
has a unique subgroup Hp of order pa. This shows that each Sylow p-subgroup
of G is either cyclic or generalized quaternion. Hence if p is odd, then Hp

is cyclic. Now suppose that p = 2. If a = 1, then, as we know, 〈z〉 is the
unique (necessarily central) subgroup of G of order 2. If a ≥ 2, then a Sylow
2-subgroup of G must be cyclic, because in a generalized quaternion group we
have BG(4) ≥ 8, which contradicts the hypothesis. Hence, again by hypothesis,
G has a unique (necessarily cyclic) subgroup of order 2a. Therefore, in either
case, H2 is the unique (necessarily cyclic) subgroup of G of order 2a. Now the
subgroup H =

∏
p∈π(m)Hp is the unique (necessarily cyclic) subgroup of G of

order m, and the proof is complete. �
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Remark. Notice that the above proof shows that if G has a unique, and nec-
essarily cyclic, subgroup of order m, then the number of solutions in G of the
equation xd = 1 is exactly d for any divisor d of m.

Now we are ready to state our main theorem.

Theorem 2.5. Let G be a group of order n and m a divisor of n. Then

1) AG(m) ≥ τ(m). In other words, G has at least τ(m) cyclic subgroups
whose orders divide m.

2) AG(m) = τ(m) if and only if G has a unique, and necessarily cyclic,
subgroup of order m.

Proof. 1) By the Frobenius theorem we have BG((m, d− 1)) ≥ (m, d− 1), for
any d̄ ∈ U(Zn), and so, by Theorem 2.1 and Corollary 2.2, we obtain

AG(m) ≥ 1

ϕ(n)

∑
d̄∈U(Zn)

(m, d− 1) = τ(m).

2) From the proof of the previous part, we know that AG(m) = τ(m) if and
only if BG((m, d − 1)) = (m, d − 1), for any d̄ ∈ U(Zn). Now the result easily
follows from Lemma 2.3 and Theorem 2.4. �

Corollary 2.6. Let G be a group of order n and π a set of primes. Then

1) G has at least τ(nπ) cyclic π-subgroups;
2) G has exactly τ(nπ) cyclic π-subgroups if and only if G has a normal

cyclic Hall π-subgroup.

Corollary 2.7. There does not exist a group G of order n having τ(n) + 1
subgroups.

Proof. Deny. Then G is not cyclic and so, by Theorem 2.5, G has at least
τ(n)+1 cyclic subgroups. Therefore G has at least τ(n)+2 subgroups, contrary
to assumption. �

Finally we are going to classify groups of order n having τ(n)+2 subgroups.
To do this, we have to characterize minimal noncyclic groups, that is, noncyclic
groups all of whose proper subgroups are cyclic. The following proposition
which is a characterization of minimal noncyclic groups has also been appeared
in [6] as Theorem 2.1. However, our proof is different than theirs.

Proposition 2.8. Let G be a minimal noncyclic group. Then G is isomorphic
to one of the following:

i) Zp × Zp, where p is a prime;
ii) Q8;
iii) 〈a, b | aq = bp

r

= 1, b−1ab = as〉, where r, s ∈ N, q - s− 1, q | sp− 1, and
p, q are distinct primes.
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Proof. If G is abelian, then G must be a p-group for some prime p, so G is
isomorphic to Zp ×Zp. Now if G is nonabelian, then G is minimal nonabelian.
By Theorem 6.5.8 in [4], either 1) G is a p-group for some prime p, or 2)
G = PQ, where P ∈ Sylp(G) is cyclic and Q ∈ Sylq(G) is an elementary
abelian normal subgroup of G for some distinct primes p and q. In the first
case, since all maximal subgroups of G are cyclic by assumption, hence by the
structure of p-groups with a cyclic maximal subgroup, see Theorem 12.5.1 in
[1], we easily deduce that G is isomorphic to Q8. In the second case, since G is
minimal noncyclic, so Q is isomorphic to Zq and it can be seen that G has the
structure mentioned in iii). �

The last corollary gives a characterization of groups of order n having τ(n)+2
subgroups.

Corollary 2.9. Let G be a group of order n. Then G has τ(n) + 2 subgroups
if and only if G is isomorphic to one of the following:

1) V4;
2) Q8;;
3) 〈a, b|a3 = b2

r

= 1, b−1ab = a−1〉, where r ∈ N.

Proof. Let G have τ(n)+2 subgroups. Hence G is minimal noncyclic. Now, by
Proposition 2.8, G is either Zp ×Zp, or Q8, or 〈a, b | aq = bp

r

= 1, b−1ab = as〉,
where p, q, r, s satisfy in some certain conditions. If G = Zp × Zp, then G
has p + 3 subgroups. On the other hand, by hypothesis, G has τ(p2) + 2 = 5
subgroups. Hence p = 2 and G = V4. Obviously, Q8 has τ(8)+2 = 6 subgroups.
Finally if G = 〈a, b | aq = bp

r

= 1, b−1ab = as〉, then n = prq. But all subgroups

of G are G, 〈bai(1−s)〉, 1 ≤ i ≤ q, 〈bpj 〉, and 〈bpj 〉〈a〉, 1 ≤ j ≤ r. Therefore G has
1+q+2r subgroups. On the other hand, by hypothesis, G has τ(prq)+2 = 4+2r
subgroups. Hence q = 3. It then follows from 3 - s− 1 and sp ≡ 1(mod 3) that
p = 2 and s = 2. This completes the proof. �
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