ON THE NUMBER OF CYCLIC SUBGROUPS OF A FINITE GROUP

Mohammad Hossein Jafari and Ali Reza Madadi

Abstract

Let G be a finite group and m a divisor of $|G|$. We prove that G has at least $\tau(m)$ cyclic subgroups whose orders divide m, where $\tau(m)$ is the number of divisors of m.

1. Introduction

Throughout all groups are assumed to be finite. A well known result in group theory says that a cyclic group of order n has a unique subgroup of order d, for any divisor d of n, so a cyclic group of order n has exactly $\tau(n)$ (necessarily cyclic) subgroups. A generalization of this result was obtained by Richards in [3]. He proved that a group of order n has at least $\tau(n)$ cyclic subgroups, and the group is cyclic if and only if it has exactly $\tau(n)$ cyclic subgroups. In this paper we generalize Richards' result and then classify groups of order n with $\tau(n)+2$ subgroups. Also we obtain a generalization of the Kesava Menon identity [2].

2. Main results

For a group G and a divisor m of $|G|$, let $A_{G}(m)$ denote the number of cyclic subgroups of G whose orders divide m and $B_{G}(m)$ denote the number of solutions in G of the equation $x^{m}=1$. Also for any natural number n and any subset π of prime numbers, we write $n=n_{\pi} n_{\pi^{\prime}}$, where π^{\prime} is the complement of π in prime numbers, and n_{π} and $n_{\pi^{\prime}}$ are the π-part and π^{\prime}-part of n, respectively.

The following theorem shows that there is a close connection between the arithmetic functions A_{G} and B_{G}. Note that for any $n \in \mathbb{N}$, the set $\{\bar{d}: 1 \leq$ $d \leq n,(d, n)=1\}$ denoted by $U\left(\mathbb{Z}_{n}\right)$ is the group of integers modulo n under multiplication.

Received September 29, 2016; Revised December 19, 2016; Accepted February 13, 2017. 2010 Mathematics Subject Classification. 20D15, 20D20, 11A25.
Key words and phrases. cyclic subgroups, Sylow subgroups, arithmetic functions.

Theorem 2.1. Let G be a group of order n and m a divisor of n. Then

$$
A_{G}(m)=\frac{1}{\varphi(n)} \sum_{\bar{d} \in U\left(\mathbb{Z}_{n}\right)} B_{G}((m, d-1))
$$

where φ is the Euler totient function.
Proof. Let Ω denote the set $\left\{x \in G: x^{m}=1\right\}$. Then, obviously, the group $U\left(\mathbb{Z}_{n}\right)$ acts on Ω via $x . \bar{r}=x^{r}$, where $x \in \Omega$ and $\bar{r} \in U\left(\mathbb{Z}_{n}\right)$. We claim that $x, y \in \Omega$ have the same orbits if and only if $\langle x\rangle=\langle y\rangle$. If x and y have the same orbits, then, obviously, $\langle x\rangle=\langle y\rangle$. Conversely, suppose that $\langle x\rangle=\langle y\rangle$. Hence there is an $r \in \mathbb{N}$ such that $y=x^{r}$ and $(r, o(x))=1$. Let π, π_{1}, and π_{2} be the set of prime divisors of $n, o(x)$, and r, respectively. It is trivial that $\pi_{1} \subseteq \pi$ and $\pi_{1} \cap \pi_{2}=\emptyset$. Now if we let $\pi_{3}=\pi-\left(\pi_{1} \cup \pi_{2}\right)$ and $k=n_{\pi_{1}} n_{\pi_{3}}+r$, then it is easy to see that $(k, n)=1$ and $y=x^{k}$. Thus $y=x . \bar{k}$, as desired. Therefore, by the claim, the number of the orbits of the action is equal to $A_{G}(m)$, the number of cyclic subgroups of G whose orders divide m. Now, by the Cauchy-Frobenius Lemma, we have

$$
A_{G}(m)=\frac{1}{\varphi(n)} \sum_{\bar{d} \in U\left(\mathbb{Z}_{n}\right)} \chi(\bar{d})
$$

where χ is the permutation character associated with the action. But

$$
\begin{aligned}
\chi(\bar{d}) & =|\{x \in \Omega: x . \bar{d}=x\}| \\
& =\left|\left\{x \in \Omega: x^{d}=x\right\}\right| \\
& =\left|\left\{x \in G: x^{m}=1, x^{d-1}=1\right\}\right| \\
& =\left|\left\{x \in G: x^{(m, d-1)}=1\right\}\right| \\
& =B_{G}((m, d-1)),
\end{aligned}
$$

and the proof is complete.
The following corollary can be viewed as a generalization of the well-known Kesava Menon identity [2]. For other generalizations of the Kesava Menon identity, we refer the reader to [5] and [7].

Corollary 2.2. Let $m, n \in \mathbb{N}$ and $m \mid n$. Then

$$
\sum_{\bar{d} \in U\left(\mathbb{Z}_{n}\right)}(m, d-1)=\varphi(n) \tau(m)
$$

Proof. Let G be a cyclic group of order n. Since G has a unique (necessarily cyclic) subgroup of each divisor of n, so G has exactly $\tau(m)$ cyclic subgroups whose orders divide m, hence $A_{G}(m)=\tau(m)$. It is also obvious that $B_{G}((m, d-$ $1))=(m, d-1)$ for any $\bar{d} \in U\left(\mathbb{Z}_{n}\right)$. Now the result follows from the previous theorem.

Before giving another consequence of the above theorem, we will characterize the set $\left\{(m, d-1): \bar{d} \in U\left(\mathbb{Z}_{n}\right)\right\}$ using the Chinese remainder theorem. In the following, let $\pi(m)$ be the set of all prime divisors of the natural number m. Also let $D(m)$ be the set of all even divisors of m if m is even, and the set of all divisors of m if m is odd.

Lemma 2.3. Let $m, n \in \mathbb{N}, m \mid n$. Then $D(m)=\left\{(m, d-1): \bar{d} \in U\left(\mathbb{Z}_{n}\right)\right\}$.
Proof. Let $X=\left\{(m, d-1): \bar{d} \in U\left(\mathbb{Z}_{n}\right)\right\}$. We consider two cases.

1) Suppose that m is odd. It is clear that $X \subseteq D(m)$. Conversely, we show that if $k \in D(m)$, then $k \in X$. To this end, let $\sigma=\pi(k), \pi=\pi(m), \pi_{1}=\{2\}$, and $\pi_{2}=\pi^{\prime}-\pi_{1}$. Hence $\sigma \subseteq \pi$ and $n=n_{\pi} n_{\pi_{1}} n_{\pi_{2}}$. Now, by the Chinese remainder theorem, the following system of linear congruences

$$
\left\{\begin{array}{lll}
k x \equiv 1 & \left(\bmod n_{\pi_{2}}\right) & \\
k x \equiv 1 & (\bmod p) & \text { if } p \in \pi-\sigma \\
x \equiv 1 & (\bmod p) & \text { if } p \in \sigma \\
x \equiv 0 & (\bmod 2) &
\end{array}\right.
$$

has a simultaneous solution, say a. The last congruence says that a is even, so $b=1+k a$ is odd. We now show that $(b, n)=1$. Assume by way of contradiction that q is a prime divisor of (b, n), and so q is odd. Also note that $q \notin \sigma$, for $q \mid 1+k a$. It follows therefore that either $q \in \pi_{2}$ or $q \in \pi-\sigma$. Suppose first that $q \in \pi_{2}$. Hence $q \mid n_{\pi_{2}}$, and since $b \equiv 2\left(\bmod n_{\pi_{2}}\right)$ and $q \mid b$, we deduce that $q=2$, a contradiction. Suppose now that $q \in \pi-\sigma$. Hence $b \equiv 2(\bmod q)$, and since $q \mid b$, it then follows that $q=2$, again a contradiction. Now we have

$$
(m, b-1)=(m, k a)=k\left(\frac{m}{k}, a\right)=k,
$$

where the last equality follows from the second and third congruences of the above system. Therefore, $k \in X$, and the proof completes.
2) Suppose now that m is even. Hence n is even and consequently $X \subseteq$ $D(m)$. Now we show that if $k \in D(m)$, then $k \in X$. To this end, let $\sigma=\pi(k)$ and $\pi=\pi(m)$. Hence $2 \in \sigma \subseteq \pi$ and $n=n_{\pi} n_{\pi^{\prime}}$. Again, by the Chinese remainder theorem, the following system of linear congruences

$$
\left\{\begin{array}{rll}
k x \equiv 1 & \left(\bmod n_{\pi^{\prime}}\right) & \\
k x \equiv 1 & (\bmod p) & \text { if } p \in \pi-\sigma \\
x \equiv 1 & (\bmod p) & \text { if } p \in \sigma
\end{array}\right.
$$

has a simultaneous solution, say a. Since k is even, so $b=1+k a$ is odd. We now show that $(b, n)=1$. Assume by way of contradiction that q is a prime divisor of (b, n), and so q is odd. Again $q \notin \sigma$ for $q \mid 1+k a$. It follows therefore that either $q \in \pi^{\prime}$ or $q \in \pi-\sigma$. Suppose first that $q \in \pi^{\prime}$. Hence $q \mid n_{\pi^{\prime}}$, and since $b \equiv 2\left(\bmod n_{\pi^{\prime}}\right)$ and $q \mid b$, we deduce that $q=2$, a contradiction. Suppose now that $q \in \pi-\sigma$. Hence $b \equiv 2(\bmod q)$, and since $q \mid b$, it then follows that $q=2$, again a contradiction. Now we have

$$
(m, b-1)=(m, k a)=k\left(\frac{m}{k}, a\right)=k
$$

where the last equality follows from the second and third congruences of the latter system. Therefore, $k \in X$, and the proof is complete.

There is a classic result in group theory which says that a group G of order n is cyclic if and only if the number of solutions in G of the equation $x^{d}=1$ is at most d, for any divisor d of n. We generalize this result in the next theorem.

Theorem 2.4. Let G be a group of order n and m a divisor of n. Then the following are equivalent:

1) G has a unique, and necessarily cyclic, subgroup of order m;
2) the number of solutions in G of the equation $x^{d}=1$ is exactly d for any $d \in D(m)$;
3) the number of solutions in G of the equation $x^{d}=1$ is at most d for any $d \in D(m)$.

Proof. 1) $\Rightarrow 2$): Let H be the unique, and necessarily cyclic, subgroup of G of order m. Let $x \in G$ be arbitrary such that $x^{d}=1$, where $d \in D(m)$. We show that $x \in H$. To this end, it suffices to show that if P is any Sylow p-subgroup of $\langle x\rangle$, then $P \subseteq H$. Since normalizers grow in p-groups, so there exists a p subgroup Q of G such that $P \subseteq Q$ and $|Q|=p^{a}$, where $m=p^{a} s$ with $p \nmid s$. Now if K is the unique subgroup of H of order s, then K is normal in G, so $Q K$ is a subgroup of G of order m. By uniqueness of H, we have $H=Q K$. Therefore, $P \subseteq Q \subseteq H$, and the proof is complete.
2) $\Rightarrow 3$): Trivial.
3) $\Rightarrow 1$): First we claim that if m is even, then $B_{G}(d) \leq d$ for each odd divisor d of m.

Let d be an arbitrary odd divisor of m. Since $B_{G}(2) \leq 2$, so G has a unique (necessarily central) involution z. Now if $y^{d}=1$ for some $y \in G$, then we have $y^{2 d}=1=(z y)^{2 d}$ and $(z y)^{d} \neq 1$. Thus if we let $C=\left\{x \in G: x^{d}=1\right\}$ and $D=\left\{x \in G: x^{2 d}=1\right\}$, then $C \cap z C=\emptyset,|z C|=|C|$, and $C \cup z C \subseteq D$. Since $|D|=B_{G}(2 d) \leq 2 d$, so $B_{G}(d)=|C| \leq d$, as desired.

Now we prove that G has a unique subgroup of order m, and that this subgroup is cyclic. Let p be an arbitrary prime divisor of m such that $p^{a} \mid m$ and $p^{a+1} \nmid m$. Since G has a p-subgroup of order p^{a} and $B_{G}\left(p^{a}\right) \leq p^{a}$, so G has a unique subgroup H_{p} of order p^{a}. This shows that each Sylow p-subgroup of G is either cyclic or generalized quaternion. Hence if p is odd, then H_{p} is cyclic. Now suppose that $p=2$. If $a=1$, then, as we know, $\langle z\rangle$ is the unique (necessarily central) subgroup of G of order 2. If $a \geq 2$, then a Sylow 2-subgroup of G must be cyclic, because in a generalized quaternion group we have $B_{G}(4) \geq 8$, which contradicts the hypothesis. Hence, again by hypothesis, G has a unique (necessarily cyclic) subgroup of order 2^{a}. Therefore, in either case, H_{2} is the unique (necessarily cyclic) subgroup of G of order 2^{a}. Now the subgroup $H=\prod_{p \in \pi(m)} H_{p}$ is the unique (necessarily cyclic) subgroup of G of order m, and the proof is complete.

Remark. Notice that the above proof shows that if G has a unique, and necessarily cyclic, subgroup of order m, then the number of solutions in G of the equation $x^{d}=1$ is exactly d for any divisor d of m.

Now we are ready to state our main theorem.
Theorem 2.5. Let G be a group of order n and m a divisor of n. Then

1) $A_{G}(m) \geq \tau(m)$. In other words, G has at least $\tau(m)$ cyclic subgroups whose orders divide m.
2) $A_{G}(m)=\tau(m)$ if and only if G has a unique, and necessarily cyclic, subgroup of order m.

Proof. 1) By the Frobenius theorem we have $B_{G}((m, d-1)) \geq(m, d-1)$, for any $\bar{d} \in U\left(\mathbb{Z}_{n}\right)$, and so, by Theorem 2.1 and Corollary 2.2, we obtain

$$
A_{G}(m) \geq \frac{1}{\varphi(n)} \sum_{\bar{d} \in U\left(\mathbb{Z}_{n}\right)}(m, d-1)=\tau(m)
$$

2) From the proof of the previous part, we know that $A_{G}(m)=\tau(m)$ if and only if $B_{G}((m, d-1))=(m, d-1)$, for any $\bar{d} \in U\left(\mathbb{Z}_{n}\right)$. Now the result easily follows from Lemma 2.3 and Theorem 2.4.

Corollary 2.6. Let G be a group of order n and π a set of primes. Then

1) G has at least $\tau\left(n_{\pi}\right)$ cyclic π-subgroups;
2) G has exactly $\tau\left(n_{\pi}\right)$ cyclic π-subgroups if and only if G has a normal cyclic Hall π-subgroup.

Corollary 2.7. There does not exist a group G of order n having $\tau(n)+1$ subgroups.

Proof. Deny. Then G is not cyclic and so, by Theorem 2.5, G has at least $\tau(n)+1$ cyclic subgroups. Therefore G has at least $\tau(n)+2$ subgroups, contrary to assumption.

Finally we are going to classify groups of order n having $\tau(n)+2$ subgroups. To do this, we have to characterize minimal noncyclic groups, that is, noncyclic groups all of whose proper subgroups are cyclic. The following proposition which is a characterization of minimal noncyclic groups has also been appeared in [6] as Theorem 2.1. However, our proof is different than theirs.

Proposition 2.8. Let G be a minimal noncyclic group. Then G is isomorphic to one of the following:
i) $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, where p is a prime;
ii) Q_{8};
iii) $\left\langle a, b \mid a^{q}=b^{p^{r}}=1, b^{-1} a b=a^{s}\right\rangle$, where $r, s \in \mathbb{N}, q \nmid s-1, q \mid s^{p}-1$, and p, q are distinct primes.

Proof. If G is abelian, then G must be a p-group for some prime p, so G is isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Now if G is nonabelian, then G is minimal nonabelian. By Theorem 6.5.8 in [4], either 1) G is a p-group for some prime p, or 2) $G=P Q$, where $P \in \operatorname{Syl}_{p}(G)$ is cyclic and $Q \in \operatorname{Syl}_{q}(G)$ is an elementary abelian normal subgroup of G for some distinct primes p and q. In the first case, since all maximal subgroups of G are cyclic by assumption, hence by the structure of p-groups with a cyclic maximal subgroup, see Theorem 12.5.1 in [1], we easily deduce that G is isomorphic to Q_{8}. In the second case, since G is minimal noncyclic, so Q is isomorphic to \mathbb{Z}_{q} and it can be seen that G has the structure mentioned in iii).

The last corollary gives a characterization of groups of order n having $\tau(n)+2$ subgroups.

Corollary 2.9. Let G be a group of order n. Then G has $\tau(n)+2$ subgroups if and only if G is isomorphic to one of the following:

1) V_{4};
2) Q_{8};
3) $\left\langle a, b \mid a^{3}=b^{2^{r}}=1, b^{-1} a b=a^{-1}\right\rangle$, where $r \in \mathbb{N}$.

Proof. Let G have $\tau(n)+2$ subgroups. Hence G is minimal noncyclic. Now, by Proposition 2.8, G is either $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, or Q_{8}, or $\left\langle a, b \mid a^{q}=b^{p^{r}}=1, b^{-1} a b=a^{s}\right\rangle$, where p, q, r, s satisfy in some certain conditions. If $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, then G has $p+3$ subgroups. On the other hand, by hypothesis, G has $\tau\left(p^{2}\right)+2=5$ subgroups. Hence $p=2$ and $G=V_{4}$. Obviously, Q_{8} has $\tau(8)+2=6$ subgroups. Finally if $G=\left\langle a, b \mid a^{q}=b^{p^{r}}=1, b^{-1} a b=a^{s}\right\rangle$, then $n=p^{r} q$. But all subgroups of G are $G,\left\langle b a^{i(1-s)}\right\rangle, 1 \leq i \leq q,\left\langle b^{p^{j}}\right\rangle$, and $\left\langle b^{p^{j}}\right\rangle\langle a\rangle, 1 \leq j \leq r$. Therefore G has $1+q+2 r$ subgroups. On the other hand, by hypothesis, G has $\tau\left(p^{r} q\right)+2=4+2 r$ subgroups. Hence $q=3$. It then follows from $3 \nmid s-1$ and $s^{p} \equiv 1(\bmod 3)$ that $p=2$ and $s=2$. This completes the proof.

References

[1] M. Hall, The Theory of Groups, The Macmillan Company, 1963.
[2] P. Kesava Menon, On the sum $\sum(a-1, n)[(a, n)=1]$, J. Indian Math. Soc. 29 (1965), 155-163.
[3] I. M. Richards, A remark on the number of cyclic subgroups of a finite group, Amer. Math. Monthly 91 (1984), no. 9, 571-572.
[4] W. R. Scott, Group Theory, Dover Publications, Inc., New York, 1987.
[5] B. Sury, Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo 58 (2009), no. 1, 99-108.
[6] M. Tărnăuceanu and L. Tóth, Cyclicity degrees of finite groups, Acta Math. Hungar. 145 (2015), no. 2, 489-504.
[7] L. Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino 69 (2011), no. 1, 97-110.

Mohammad Hossein Jafari
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz
TABriz 5166616471, Iran
E-mail address: jafari@tabrizu.ac.ir
Ali Reza Madadi
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Tabriz
TABRIZ 5166616471, IRAN
E-mail address: a-madadi@tabrizu.ac.ir

