DOI QR코드

DOI QR Code

Evaluation of the Liver Cancer Diagnosis Function of PET-MRI Based on Decision Matrix Analysis

판정행렬분석을 통한 PET-MRI의 간암 진단성능 평가

  • 김진의 (동신대학교 방사선학과) ;
  • 김정수 (동남보건대학교 방사선과) ;
  • 최남길 (동신대학교 방사선학과) ;
  • 한재복 (동신대학교 방사선학과)
  • Received : 2017.09.12
  • Accepted : 2017.10.26
  • Published : 2017.11.28

Abstract

To evaluate the capability of integrated PET-MRI, which has recently been utilized in the clinical practices, on the diagnosis of liver cancer, its utility was assessed by $2{\times}2$ decision matrix. The numbers of abnormal and normal decisions on the liver cancer were 98 and 51 cases, respectively, upon PET-MRI scan results of the subjects, and the numbers of positive and negative decisions were 103 and 62, respectively, upon cytopathologic results. Out of the two tests, 95 cases were shown as true-positive and 3 were false positive, while 62 were true negative and 5 were false negative. Upon the results of PET-MRI test, its sensitivity, specificity, false negative rate, and false positive rate were 95.00%, 95.38%, 0.05%, and 95.15%, respectively. Therefore, it is considered to have the high potential to use the determination of the stage before the surgery, detections of recurrence and remote metastasis, assessment of uncertain remote lymph node metastasis, and so on in the diagnosis of the liver cancer, and also for the clinical utility of PET-MRI to be sufficient by integrated diagnosis and follow up scan with pathological studies.

최근 임상에서 활용하고 있는 일체형 PET-MRI의 간암 진단능력을 평가하기 위해 $2{\times}2$ 판정행렬을 이용하여 유용성을 평가하였다. 실험대상의 PET-MRI 검사 결과를 통해 간암 판정 여부 즉 비정상과 정상 판정을 받은 경우는 각각 98건, 51건 이었으며, 세포병리학적 결과가 양성과 음성 판정을 받은 경우는 각각 103건, 62건으로 나타났다. 이 중 두가지 검사에서 진양성의 경우는 95건, 위양성은 3건으로 나타났으며, 진음성은 62건, 위음성의 경우는 5건으로 분석되었다. 실험결과 PET-MRI 검사의 예민도는 95.00%, 특이도는 95.38%, 위음성률은 0.05%, 위양성률은 0.05%, 정확도는 95.15%로 분석되었다. 따라서 간암의 진단에 있어 수술 전 병기 결정이나 치료 후 재발 및 원격전이의 발견, 불분명한 원발 림프절 전이 등의 평가 등에 활용 가능성이 높을 것으로 판단되며, 특히 병리학적 검사와의 복합적 진단 및 추적검사를 통해 간암 진단을 위한 PET-MRI 임상적 유용성은 충분할 것으로 사료된다.

Keywords

References

  1. Ahmedin Jemal, Freddie Bray, Melissa M. Jacques Ferlay, Elizabeth Ward, and David Forman, "Global cancer statistics," Ca cancer J Clin., Vol.61, pp.69-90, 2011. https://doi.org/10.3322/caac.20107
  2. K. W. Jung, Y. J. Won, C. M. Oh, H. J. Kong, D. H. Lee, and K. H. Lee, "Cancer statistics in korea: incidence, mortality, survival, and prevalence in 2014," Cancer research and Treatment, Vol.49, No.2, pp.292-305, 2017. https://doi.org/10.4143/crt.2017.118
  3. Ran Xu Zhu, Wai-Kay Seto, Ching-Lung Lai, Man-Fung Yuen, M. J. Daly, and R. E. Henly, "Epidemiology of hepatocellular carcinoma in the asia-pacific region," Gut Liver, Vol.10, No.3, pp.332-339, 2016.
  4. S. K. Yoon and H. G. Chun, "Status of hepatocellular carcinoma in south korea," Chin Clin Oncol, Vol.2, No.4, p.39, 2013.
  5. E. Y. Lee, T. T. Xuan Mai, Y. J. Chang, and M. R. Ki, "Trends of liver cancer and its major risk factors in korea," Epidemiol Health, Vol.37, p.e2015016, 2015. https://doi.org/10.4178/epih/e2015016
  6. Robert G. Gish, Richard S. Finn, and Jorge A. Marrero, "Extending survival with the use of targeted therapy in the treatment of hepatocellular carcinoma," Gastroenterol Hepatol, Vol.9, No.4, suppl.2, pp.1-24, 2013.
  7. Josep M. Llovet, Maria Isabel Real, Xavier Montana, Ramon Planas, Susana Coll, John Aponte, Carmen Ayuso, Margarita Sala, Jordi Muchart, Ricard Sola, Joan Rodes, and Jordi Bruix, "Arterial embolisation or chemoembolisation versus symptomatic," Lancet, Vol.359, pp.1734-1739, 2002. https://doi.org/10.1016/S0140-6736(02)08649-X
  8. Gerald D. Dodd, Michael C. Soulen, Robert A. Kane, Tito Livraghi, William R. Lees, Yasuyuki Yamashita, Alison R. Gillams, Okkes I. Karahan, and H. C. Rhim, "Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough," Radiographics, Vol.20, pp.9-27, 2000. https://doi.org/10.1148/radiographics.20.1.g00ja019
  9. D. G. Farmer, M. H. Rosove, A. Shaked, and R W. Busuttil, "Current treatment modalities for hepatocellular carcinoma," Ann Surg, Vol.219, pp.236-247, 1994. https://doi.org/10.1097/00000658-199403000-00003
  10. F. F. Haddad, W. C. Chapman, J. K. Wright, T. K. Blair, and C. W. Pinson, "Clinical experience with cryosurgery for advanced hepatobiliary tumors," J Surg Res., Vol.75, pp.103-108, 1998. https://doi.org/10.1006/jsre.1998.5280
  11. Eric C. Ehman, Geoffrey B. Johnson, Javier E. Villanueva-Meyer, S. M. Cha, Andrew Palmera Leynes, Peder Eric Zufall Larson, and Thomas A. Hope, "PET/MRI: Where might it replace PET/CT?," J Magn Reson Imaging, doi:10.1002/jmri.25711, 2017.
  12. Felix Nensa, Karsten Beiderwellen, Philipp Heusch, and Axel Wetter, "Clinical applications of PET/MRI: current status and future perspectives," Diagn Interv Radiol, Vol.20, No.5, pp.438-447, 2014. https://doi.org/10.5152/dir.2014.14008
  13. W. Atkinson, C. Catana, J. S. Abramson, G. Arabasz, S. McDermott, O. Catalano, V. Muse, M. A. Blake, J. Barnes, M. Shelly, E. Hochberg, B. R. Rosen, and A. R. Guimaraes, "Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients," Abdom Radiol, Vol.41, pp.1338-4138, 2016. https://doi.org/10.1007/s00261-016-0638-6
  14. C. M. Tempany, J. Jayender, T. Kapur, T. Kapur, R. Bueno, A. Golby, N. Agar, and F. A. Jolesz, "Multimodal imaging for improved diagnosis and treatment of cancers," Cancer, Vol.121, pp.817-827, 2015. https://doi.org/10.1002/cncr.29012
  15. Toshio Wagai, "Studies on the foundation and development of diagnostic ultrasound," Proc Jpn Acad Ser B Phys Biol Sci., Vol.83, No.8, pp.256-265, 2007. https://doi.org/10.2183/pjab.83.256
  16. A. Samarin, M. Hullner, M. A. Queiroz, P. Stolzmann, I. A. Burger, G. Von Schulthess, and P. Veit Haibach, "$^{18}F$-FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with $^{18}F$-FDG-PET/CT," Nucl Med Commun., Vol.36, No.12, pp.1165-1173, 2015. https://doi.org/10.1097/MNM.0000000000000387
  17. K. Beiderwellen, M. Huebner, P. Heusch, J. Grueneisen, V. Ruhlmann, F. Nensa, H. Kuehl, L. Umutlu, S. Rosenbaum-Krumme, and T. C. Lauenstein, "Whole-body [$^{18}F$]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results," Eur Radiol., Vol.24, No.8, pp.2023-2030, 2014. https://doi.org/10.1007/s00330-014-3229-3
  18. K. Beiderwellen, L. Geraldo, V. Ruhlmann, P. Heusch, B. Gomez, F. Nensa, L. Umutlu, and T. C. Lauenstein, "Accuracy of [$^{18}F$]FDG PET/MRI for the detection of liver metastases," PLoS ONE, Vol.10, No.9, p.e0137285, 2015. https://doi.org/10.1371/journal.pone.0137285
  19. Philipp Heusch, Felix Nensa, Benedikt Schaarschmidt, Rupika Sivanesapillai, Karsten Beiderwellen, Benedikt Gomez, Jens Kohler, Henning Reis, Verena Ruhlmann, and Christian Buchbender, "Diagnostic accuracy of whole-body PET/MRI and whole-body PET/CT for TNM staging in oncolog," Eur J Nucl Med Mol Imaging, Vol.42, No.1, pp.42-48, 2015. https://doi.org/10.1007/s00259-014-2885-5
  20. Ali Civelek, Anshuma Rana, Ashkan Malayeri, Justin Rodante, Amit Dey, Nehal Mehta, and David Bluemke, "PET-MRI derived 18F-FDG liver SUV metrics: effects of hepatic steatosis and comparison with PET-CT," J Nucl Med., Vol.58, No.1, p.455, 2017.
  21. Kathy Schilling, Deepa Narayanan, Judith E. Kalinyak, Juliette The, Maria Victoria Velasquez, Simone Kahn, Matthew Saady, Ravinder Mahal, and Larraine Chrystal, "Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging," Eur J Nucl Med Mol Imaging, Vol.38, No.1, pp.23-36, 2011. https://doi.org/10.1007/s00259-010-1588-9
  22. Ahmet Mert, Niyazi Kilic, Erdem Bilgili, and Aydin Akan, "Breast cancer detection with reduced feature set," Comput Math Methods Med., doi:10.1155/2015/265138, 2015.
  23. A. Marcano-Cedeno, Paloma Chausa, Alejandro Garcia, Cesar Caceres, Josep M. Tormos, and Enrique J. Gomez, "Data mining applied to the cognitive rehabilitation of patients with acquired brain injury," Exp Sys Appl., Vol.40, No.4, pp.1054-1060, 2013. https://doi.org/10.1016/j.eswa.2012.08.034
  24. Dushyant V. Sahani and Sanjeeva P. Kalva, "Imaging the liver," The Oncologist, Vol.9, No.4, pp.385-397, 2004. https://doi.org/10.1634/theoncologist.9-4-385
  25. Claudio Spick, Ken Herrmann, and Johannes Czernin, "$^{18}F$-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 Patients," J Nucl Med, Vol.57, No.3, pp.420-430, 2016. https://doi.org/10.2967/jnumed.115.158808
  26. Ruben Hernaez, Mariana Lazo, Susanne Bonekamp, Ihab Kamel, Frederick L. Brancati, Eliseo Guallar, and Jeanne M. Clark, "Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis," Hepatology, Vol.54, No.3, pp.1082-1090, 2011. https://doi.org/10.1002/hep.24452
  27. Eldad S. bialecki and Adrian M. Di Bisceglie, "Diagnosis of hepatocellular carcinoma," HPB(Oxford), Vol.7, No.1, pp.26-34, 2005. https://doi.org/10.1080/13651820410024049
  28. A. Abbasi, A. R. Bhutto, N. Butt, and S. M. Munir, "Corelation of serum alpha fetoprotein and tumor size in hepatocellular carcinoma," J Pak Med Assoc, Vol.62, No.1, pp.33-36, 2012.
  29. Marialuigina Fruscella, Antonio Ponzetto, Annalisa Crema, and Guido Carloni, "The extraordinary progress in very early cancer diagnosis and personalized therapy: the role of oncomarkers and nanotechnology," J Nanotech, doi:10.1155/2016/3020361, 2016.
  30. Bing Bai, Quanzheng Li, and Richard M. Leahy, "MR guided PET image reconstruction," Semin Nucl Med., Vol.43, No.1, pp.30-44, 2014. https://doi.org/10.1053/j.semnuclmed.2012.08.006
  31. Andrew J. Vickers, "Decision analysis for the evaluation of diagnostic tests, prediction models and molecular markers," Am Stat., Vol.62, No.4, pp.314-320, 2008. https://doi.org/10.1198/000313008X370302
  32. Peter R. Killeen, "Beyond statistical inference: A decision theory for science," Psychon Bull Rev., Vol.13, No.4, pp.549-562, 2006. https://doi.org/10.3758/BF03193962