References
- Bray GA (2013) Why do we need drugs to treat the patient with obesity? Obesity (Silver Spring) 21, 893-899 https://doi.org/10.1002/oby.20394
- Li Z, Maglione M, Tu W et al (2005) Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med 142, 532-546 https://doi.org/10.7326/0003-4819-142-7-200504050-00012
- Xia Y, Kelton CM, Guo JJ, Bian B and Heaton PC (2015) Treatment of obesity: Pharmacotherapy trends in the United States from 1999 to 2010. Obesity (Silver Spring) 23, 1721-1728 https://doi.org/10.1002/oby.21136
- Apovian CM, Aronne LJ, Bessesen DH et al (2015) Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100, 342-362 https://doi.org/10.1210/jc.2014-3415
- Cheung BM, Cheung TT and Samaranayake NR (2013) Safety of antiobesity drugs. Ther Adv Drug Saf 4, 171-181 https://doi.org/10.1177/2042098613489721
- Khera R, Murad MH, Chandar AK et al (2016) Association of Pharmacological Treatments for Obesity With Weight Loss and Adverse Events: A Systematic Review and Meta-analysis. JAMA 315, 2424-2434 https://doi.org/10.1001/jama.2016.7602
- Yanovski SZ and Yanovski JA (2014) Long-term drug treatment for obesity: a systematic and clinical review. JAMA 311, 74-86 https://doi.org/10.1001/jama.2013.281361
- Goldstein DJ (1992) Beneficial health effects of modest weight loss. Int J Obes Relat Metab Disord 16, 397-415
- Choi HY, Saha SK, Kim K et al (2015) G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells. BMB Rep 48, 68-80 https://doi.org/10.5483/BMBRep.2015.48.2.250
- Kang H and Hata A (2015) The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep 48, 319-323 https://doi.org/10.5483/BMBRep.2015.48.6.206
- Fumimoto R, Sakai E, Yamaguchi Y et al (2012) The coffee diterpene kahweol prevents osteoclastogenesis via impairment of NFATc1 expression and blocking of Erk phosphorylation. J Pharmacol Sci 118, 479-486 https://doi.org/10.1254/jphs.11212FP
- Cardenas C, Quesada AR and Medina MA (2011) Medina, Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS One 6, e23407 https://doi.org/10.1371/journal.pone.0023407
- Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48, e245 https://doi.org/10.1038/emm.2016.81
- Oh JH, Lee JT, Yang ES et al (2009) The coffee diterpene kahweol induces apoptosis in human leukemia U937 cells through down-regulation of Akt phosphorylation and activation of JNK. Apoptosis 14, 1378-1386 https://doi.org/10.1007/s10495-009-0407-x
- Rosen ED and MacDougald OA (2006) MacDougald, Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7, 885-896 https://doi.org/10.1038/nrm2066
- Zhang BB, Zhou G and Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9, 407-416 https://doi.org/10.1016/j.cmet.2009.03.012
- Morisco F, Lembo V, Mazzone G, Camera S and Caporaso N (2014) Coffee and liver health. J Clin Gastroenterol 48 Suppl 1, S87-90
- Higdon JV and Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46, 101-123 https://doi.org/10.1080/10408390500400009
- Kim AR, Yoon BK, Park H et al (2016) Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes. BMB Rep 49, 111-115 https://doi.org/10.5483/BMBRep.2016.49.2.128
- Gross G, Jaccaud E and Huggett AC (1997) Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Food Chem Toxicol 35, 547-554 https://doi.org/10.1016/S0278-6915(96)00123-8
- Rustan AC, Halvorsen B, Huggett AC, Ranheim T and Drevon CA (1997) Effect of coffee lipids (cafestol and kahweol) on regulation of cholesterol metabolism in HepG2 cells. Arterioscler Thromb Vasc Biol 17, 2140-2149 https://doi.org/10.1161/01.ATV.17.10.2140
- Park GH, Song HM and Jeong JB (2016) The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3beta-dependent threonine-286 phosphorylation in human colorectal cancer cells. Food Chem Toxicol 95, 142-148 https://doi.org/10.1016/j.fct.2016.07.008
- Choi DW, Lim MS, Lee JW et al (2015) The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression. Biomol Ther (Seoul) 23, 128-133 https://doi.org/10.4062/biomolther.2014.133
- Kim HG, Hwang YP and Jeong HG (2009) Kahweol blocks STAT3 phosphorylation and induces apoptosis in human lung adenocarcinoma A549 cells. Toxicol Lett 187, 28-34 https://doi.org/10.1016/j.toxlet.2009.01.022
- Moeenfard M, Cortez A, Machado V et al (2016) Anti-Angiogenic Properties of Cafestol and Kahweol Palmitate Diterpene Esters. J Cell Biochem 117, 2748-2756 https://doi.org/10.1002/jcb.25573
- Liu XL, Ming YN, Zhang JY, Chen XY, Zeng MD and Mao YM (2017) Gene-metabolite network analysis in different nonalcoholic fatty liver disease phenotypes. Exp Mol Med 49, e283 https://doi.org/10.1038/emm.2016.123
- McGee SL, van Denderen BJ, Howlett KF et al (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860-867 https://doi.org/10.2337/db07-0843
- Stoppani J, Hildebrandt AL, Sakamoto K, Cameron-Smith D, Goodyear LJ and Neufer PD (2002) AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Am J Physiol Endocrinol Metab 283, E1239-E1248 https://doi.org/10.1152/ajpendo.00278.2002
- Habinowski SA and Witters LA (2001) The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 286, 852-856 https://doi.org/10.1006/bbrc.2001.5484
- Figarola JL and Rahbar S (2013) Smallmolecule COH-SR4 inhibits adipocyte differentiation via AMPK activation. Int J Mol Med 31, 1166-1176 https://doi.org/10.3892/ijmm.2013.1313
- Kim J, Yang G, Kim Y, Kim J and Ha J (2016) AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 48, e224 https://doi.org/10.1038/emm.2016.16
- Davies SP, Helps NR, Cohen PT and Hardie DG (1995) 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase- 2AC. FEBS Lett 377, 421-425 https://doi.org/10.1016/0014-5793(95)01368-7
- Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 32, Suppl 4: S7-12 https://doi.org/10.1038/ijo.2008.116
- Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28, 677-685 https://doi.org/10.1038/emboj.2009.8
Cited by
- Pulliat is Associated with the Activation of AMPK Signaling Pathway vol.34, pp.1, 2018, https://doi.org/10.5487/TR.2018.34.1.013