DOI QR코드

DOI QR Code

New TLE generation method based on the past TLEs

과거 TLE정보를 활용한 새로운 TLE정보 생성기법

  • Received : 2017.08.06
  • Accepted : 2017.09.21
  • Published : 2017.10.01

Abstract

In this paper, we described the new TLE(Two Line Elements) generation method based on the compansation technique by using past TLEs(Two Line Elements) released by JSpOC(Joint Space Operation Center) in USA to reduce the orbit prediction error for long duration of SGP4(Simplified General Perturbations 4) which is a simplifed and analytical orbit propagator. The orbital residuals the orbital difference between two ephemeris for the first TLE only and for the all TLEs updated by JSpOC for the past some period was applied for this algorithm instead of general orbit determination software. Actually, in these orbital residuals, the trend of orbit prediction error from SGP4 is included. Thus, it is possible to make a simple residual function from these orbital residulas by using the fitting process. By using these residual functions with SGP4 prediction data for the currnet TLE data, the compansated orbit prediction can be reconstructed and the orbit prediction error for long duration of SGP4 is also reduced. And it is possible to generate new TLE data from it. In this paper, we demonstraed this algorithm in simple simulation, and the orbital error is decreased dramatically from 4km for the SGP4 propagation to 2km for it during 7 days as a result.

본 논문에서는 인공위성의 궤도예측을 위해 사용되는 미국 합동우주관제센터(JSpOC, Joint Space Operation Center)의 TLE(Two Line Element) 정보에 대한 SGP4(Simplified General Perturbations 4) 모델의 장기 궤도예측 오차를 줄이기 위해 과거의 TLE 정보들을 이용한 보상기법을 적용하여 새로운 TLE 정보를 생성하는 방법에 대해 기술하고 있다. 이를 위해 과거 특정 시점에서의 TLE 정보를 바탕으로 현재까지 궤도전파를 한 데이터와 동일기간 동안 미국 합동우주관제센터에서 공개된 모든 TLE를 이용해서 궤도전파를 수행한 데이터를 비교하여 계산한 궤도잔차를 이용하였다. 이러한 궤도잔차 성분은 SGP4 궤도전파 모델에 의한 궤도오차 증가 경향을 보여주고 있기 때문에 궤도오차 보정을 위해 해당 궤도잔차 성분들을 적절한 함수로 표현하였다. 이후, 현재 시점에서 공개된 TLE 정보를 이용한 SGP4 궤도전파 데이터에 해당 잔차함수를 적용함으로써 장기 궤도전파에 따른 SGP4 모델의 궤도오차를 줄일 수 있었으며, 이를 바탕으로 새로운 TLE 정보를 생성하였다. 본 논문에서 일주일의 궤도전파에 대한 시뮬레이션을 통해 기존의 TLE를 이용한 궤도전파 오차가 4km 정도인 반면 새로운 TLE 생성기법에 의한 궤도전파 오차가 약 2km 수준으로 줄어드는 것을 확인할 수 있었다.

Keywords

References

  1. Hoots, F. R., Roehrich, R. L. and Kelso, T. S., "Spacetrack report no. 3.," Project Spacetrack Reports, Office of Astrodynamics, Aerospace Defense Center, 1980.
  2. Vallado, D. A., Crawford, P., Hujsak, R., and Kelso, T. S., "Revisiting spacetrack report no. 3: revision 2," In Proceedings of the 2006 AIAA/AAS Astrodynamics Specialist Conference, 2006.
  3. Definition of Two-line Element Set Coordi nate System (https://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html )
  4. Kim, H.-D., Kim. E.-H., Eom, W., Kim, E.-K., and Kim, H.-J., "Conceptual Design of a Space Debris Collision Risk Management System," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference (in Korean), November 2011, pp. 543-546.
  5. Kim, H.-D., Lee, S.-C., Cho, D.-H. and Seong, J.-D., "Development of KARI Space Debris Collision Risk Management System," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference (in Korean), April 2013, pp. 777-776.
  6. Yim, H., Jung, O.-C. and Chung, D.-W., "A Study on Enhancement of Orbit Prediction Precision for Space Objects Using TLE," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 3, 2014, pp. 270-278. https://doi.org/10.5139/JKSAS.2014.42.3.270
  7. Lee, B.-S., "NORAD TLE Conversion from Osculating Orbital Element," Journal of astronomy & space sciences, Vol. 19, No. 4, 2002, pp. 395-402. https://doi.org/10.5140/JASS.2002.19.4.395
  8. Cho, C.-H., Lee, B.-S., Lee, J.-S., Kim, J.-H. and Choi, K.-H., "NORAD TLE Type Orbit Determination of LEO Satellites Using GPS Navigation Solutions," Journal of astronomy & space sciences, Vol. 19, No. 3, 2002, pp. 197-206. https://doi.org/10.5140/JASS.2002.19.3.197
  9. Lee, B.-S. and Kim, J.-H., "Optimal Tracking Data Arc for the NORAD TLE Orbit Determination," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference (in Korean), April 2004, pp. 842-845
  10. Kim, E.-H., "TLE Orbit Determination by using selectively applying GPS Navigation Solution," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference (in Korean), April 2013, pp. 623-627.
  11. Lee, B.-S. and Park, J.-W., "Estimation of the SGP4 Drag Term from Two Osculating Orbit States," Journal of astronomy & space sciences, Vol. 20, No. 1, 2003, pp. 11-20. https://doi.org/10.5140/JASS.2003.20.1.011
  12. Kim, H.-D., Kim, E.-K., Kim, H.-J. and Kim, E.-H., "NORAD TLE Based Ground Orbit Determination for Mitigating Space Debris Collisions," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference (in Korean), November 2010, pp. 993-996.
  13. Kim, H.-D. and Song, Y.-J., "NORAD TLE based ground orbit determination strategy for mitigating space debris collisions," Proceedings of AAS/AIAA Space flight mechanics meeting, 2011.
  14. Levit, C., and Marshall, W., "Improved orbit predictions using two-line elements," Advances in Space Research, Vol. 47, No. 7, 2011, pp. 1107-1115. https://doi.org/10.1016/j.asr.2010.10.017
  15. Hong, J.-H., Kim, J.-H., Kim, S. and Ryoo, C.-K., "TLE Data based Precise Estimation of Satellite's Orbital Parameters," Proc. of the 16th International Conference on Control, Automation and Systems (ICCAS 2016), 2016, pp. 1025-1030.
  16. Kim, G.-D., Jo, S.-J. and Bang, H., "Estimation of The TLE B* Drag Term From Two GPS Data Using Differential Correction," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference (in Korean), April 2014, pp. 509-512.
  17. Choi, S.-J., Jung, O.-C., Kim, Y.-O., Chung, D.-W. and Kim, H.-J., "Analysis of TLE Accuracy according to size of LEO satellites," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference (in Korean), November 2009, pp. 1121-1124.