DOI QR코드

DOI QR Code

펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator

  • Kim, Young Sun (Department of Aerospace Engineering, University of Ulsan) ;
  • Shin, Jichul (Department of Aerospace Engineering, University of Ulsan)
  • 심사 : 2017.11.14
  • 발행 : 2017.11.01

초록

아크 플라즈마에 의해 구동되는 스파크 제트의 다양한 에너지 공급 방법에 따른 효율적 운전 성능 특성에 대한 실험적 연구를 수행하였다. 펄스 당 37 mJ의 주입 에너지에 의한 급속한 기체의 가열에 의해 약 330 m/s의 고속 제트가 발생함을 확인하였다. 제트의 최대 속도와 침투 거리는 각각 주입된 전력량과 펄스 당 주입된 에너지에 비례하였다. 낮은 에너지에서는 오리피스 직경이 작을수록 더 높은 속도의 제트가 발생하였다. 공급 에너지가 같다면 전류를 높인 펄스가 펄스 폭을 높인 펄스보다 높은 속도의 제트를 발생시켰다. 펄스 폭이 약 $10{\mu}s$이고 펄스 당 에너지가 약 10 mJ인 경우가 효율적인 운전에 보다 더 적합한 것으로 확인되었다.

The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

키워드

참고문헌

  1. Zaman, K. B. M. Q., Hirt, S. M., and Bencic, T. J., "Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators," NASA TM-2012-217437, 2012.
  2. Viswanath, P. R., "Aircraft viscous drag reduction using riblets,"Progress in Aerospace Sciences, Vol. 38, No. 6-7, 2002, pp.571-600. https://doi.org/10.1016/S0376-0421(02)00048-9
  3. Uruba, V., Jonas, P., and Mazur, O., "Control of a channel-flow behind a backward-facing step by suction/blowing," International Journal of Heat and Fluid Flow, Vol. 28, No. 4, 2007, pp.665-672. https://doi.org/10.1016/j.ijheatfluidflow.2007.04.002
  4. Godard, G., and Stranislas, M., "Control of a decelerating boundary layer. Part 3: Optimization of round jets vortex generators," Aerospace Science and Technology, Vol. 10, No. 6, 2006, pp.455-464. https://doi.org/10.1016/j.ast.2005.11.005
  5. Laurendeau, F. Chedevergne, F., and Casalis, G. "Transient ejection phase modeling of a Plasma Synthetic Jet actuator,"Physics of Fluids, Vol. 26, No. 12, 2014, 125101. https://doi.org/10.1063/1.4902394
  6. Raizer, Yu. P., Gas Discharge Physics, Springer, New York, N.Y., U.S.A., 1991.
  7. Samimy, M., Kearney-Fischer, M., Kim, J.-H., and Sinha, A., "High-Speed and High-Reynolds-Number Jet Control Using Localized Arc Filament Plasma Actuators," Journal of Propulsion and Power, Vol. 28, No. 2, 2012, pp.269-280. https://doi.org/10.2514/1.B34272
  8. Ombrello, T., Ju, Y., and Fridman, A., "Kinetic Ignition Enhancement of Diffusion Flames by Nonequilibrium Magnetic Gliding Arc Plasma,"AIAA Journal, Vol. 46, No. 10, 2008, pp.2424-2433. https://doi.org/10.2514/1.33005
  9. Leonov, S. B., and Yarantsev, D. A., "Near-Surface Electrical Discharge in Supersonic Airflow: Properties and Flow Control,"Journal of Propulsion and Power, Vol. 24, No. 6, 2008, pp.1168-1181. https://doi.org/10.2514/1.24585
  10. Cybyk, B. Z., Grossman, K. R., and Vanwie, D. M., "Spark jet actuators for flow control,"41st Aerospace Sciences Meeting and Exhibit, Reno, N.V., U.S.A., AIAA 2003-0057, 2003.
  11. Lv, Y., Shan, Y., Zhang, J., and Tan, X., "A Numerical Investigation of the Sparkjet Actuator in Multiple-shot Mode,"Procedia Engineering, Vol. 99, 2015, pp.1514-1525. https://doi.org/10.1016/j.proeng.2014.12.703