DOI QR코드

DOI QR Code

Brain morphology according to age, sex, and handedness

  • 투고 : 2017.01.06
  • 심사 : 2017.05.12
  • 발행 : 2017.07.31

초록

In this article, we review the differences of the brain morphology according to age, sex, and handedness. Age is a well-known factor affecting brain morphology. With aging, progressive reduction of brain volume is driven. Sex also has great effects on brain morphology. Although there are some reports that the differences of brain morphology may originate from the differences of weight between the 2 sexes, studies have demonstrated that there are regional differences even after the correction for weight. Handedness has long been regarded as a behavioral marker of functional asymmetry. Although there have been debates about the effect of handedness on brain morphology, previous well-established studies suggest there are differences in some regions according to handedness. Even with the studies done so far, normal brain morphology is not fully understood. Therefore, studies specific for the each ethnic group and standardized methods are needed to establish a more reliable database of healthy subjects' brain morphology.

키워드

참고문헌

  1. Carper RA, Treiber JM, DeJesus SY, Muller RA. Reduced hemispheric asymmetry of white matter microstructure in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 2016;55:1073-1080. https://doi.org/10.1016/j.jaac.2016.09.491
  2. Lai MC, Lerch JP, Floris DL, Ruigrok AN, Pohl A, Lombardo MV, et al. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res 2017;95:380-397. https://doi.org/10.1002/jnr.23948
  3. DeMyer MK, Gilmor RL, Hendrie HC, DeMyer WE, Augustyn GT, Jackson RK. Magnetic resonance brain images in schizophrenic and normal subjects: influence of diagnosis and education. Schizophr Bull 1988;14:21-37. https://doi.org/10.1093/schbul/14.1.21
  4. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001;49:1-52.
  5. Squarzoni P, Tamashiro-Duran J, Souza Duran FL, Santos LC, Vallada HP, Menezes PR, et al. Relationship between regional brain volumes and cognitive performance in the healthy aging: an MRI study using voxel-based morphometry. J Alzheimers Dis 2012;31:45-58. https://doi.org/10.3233/JAD-2012-111124
  6. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001;14:685-700. https://doi.org/10.1006/nimg.2001.0857
  7. Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM. Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage 2004;21:1174-1181. https://doi.org/10.1016/j.neuroimage.2003.11.004
  8. Marstaller L, Williams M, Rich A, Savage G, Burianova H. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience 2015;290:369-378. https://doi.org/10.1016/j.neuroscience.2015.01.049
  9. Feldman HM, Yeatman JD, Lee ES, Barde LH, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr 2010;31:346-356. https://doi.org/10.1097/DBP.0b013e3181dcaa8b
  10. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics 2007;4:316-329. https://doi.org/10.1016/j.nurt.2007.05.011
  11. Jernigan TL, Archibald SL, Berhow MT, Sowell ER, Foster DS, Hesselink JR. Cerebral structure on MRI, Part I: Localization of age-related changes. Biol Psychiatry 1991;29:55-67.
  12. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 2003;23:3295-3301. https://doi.org/10.1523/JNEUROSCI.23-08-03295.2003
  13. Curiati PK, Tamashiro JH, Squarzoni P, Duran FL, Santos LC, Wajngarten M, et al. Brain structural variability due to aging and gender in cognitively healthy Elders: results from the Sao Paulo Ageing and Health study. AJNR Am J Neuroradiol 2009;30:1850-1856. https://doi.org/10.3174/ajnr.A1727
  14. Grieve SM, Clark CR, Williams LM, Peduto AJ, Gordon E. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 2005;25:391-401. https://doi.org/10.1002/hbm.20115
  15. Fama R, Sullivan EV. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev 2015;54:29-37. https://doi.org/10.1016/j.neubiorev.2015.03.008
  16. Hughes EJ, Bond J, Svrckova P, Makropoulos A, Ball G, Sharp DJ, et al. Regional changes in thalamic shape and volume with increasing age. Neuroimage 2012;63:1134-1142. https://doi.org/10.1016/j.neuroimage.2012.07.043
  17. Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, et al. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 2008;29:102-116. https://doi.org/10.1016/j.neurobiolaging.2006.09.003
  18. Amunts K, Jancke L, Mohlberg H, Steinmetz H, Zilles K. Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 2000;38:304-312. https://doi.org/10.1016/S0028-3932(99)00075-5
  19. Ardekani BA, Figarsky K, Sidtis JJ. Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb Cortex 2013;23:2514-2520. https://doi.org/10.1093/cercor/bhs253
  20. Luders E, Steinmetz H, Jancke L. Brain size and grey matter volume in the healthy human brain. Neuroreport 2002;13:2371-2374. https://doi.org/10.1097/00001756-200212030-00040
  21. Sacher J, Neumann J, Okon-Singer H, Gotowiec S, Villringer A. Sexual dimorphism in the human brain: evidence from neuroimaging. Magn Reson Imaging 2013;31:366-375. https://doi.org/10.1016/j.mri.2012.06.007
  22. Abe O, Yamasue H, Yamada H, Masutani Y, Kabasawa H, Sasaki H, et al. Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed 2010;23:446-458. https://doi.org/10.1002/nbm.1479
  23. Narr KL, Bilder RM, Luders E, Thompson PM, Woods RP, Robinson D, et al. Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage 2007;34:939-948. https://doi.org/10.1016/j.neuroimage.2006.08.052
  24. DeLacoste-Utamsing C, Holloway RL. Sexual dimorphism in the human corpus callosum. Science 1982;216:1431-1432. https://doi.org/10.1126/science.7089533
  25. Luders E, Toga AW, Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum. Neuroimage 2014;84:820-824. https://doi.org/10.1016/j.neuroimage.2013.09.040
  26. Perlaki G, Orsi G, Plozer E, Altbacker A, Darnai G, Nagy SA, et al. Are there any gender differences in the hippocampus volume after head-size correction? A volumetric and voxel-based morphometric study. Neurosci Lett 2014;570:119-123. https://doi.org/10.1016/j.neulet.2014.04.013
  27. Tan A, Ma W, Vira A, Marwha D, Eliot L. The human hippocampus is not sexually-dimorphic: meta-analysis of structural MRI volumes. Neuroimage 2016;124(Pt A):350-366. https://doi.org/10.1016/j.neuroimage.2015.08.050
  28. Xie Y, Chen YA, De Bellis MD. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and adolescents: a magnetic resonance imaging volumetric study. J Child Neurol 2012;27:325-331. https://doi.org/10.1177/0883073811419260
  29. Habib M, Gayraud D, Oliva A, Regis J, Salamon G, Khalil R. Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn 1991;16:41-61. https://doi.org/10.1016/0278-2626(91)90084-L
  30. Guadalupe T, Willems RM, Zwiers MP, Arias Vasquez A, Hoogman M, Hagoort P, et al. Differences in cerebral cortical anatomy of leftand right-handers. Front Psychol 2014;5:261.
  31. Ocklenburg S, Friedrich P, Gunturkun O, Genc E. Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett 2016;633:210-214. https://doi.org/10.1016/j.neulet.2016.09.046
  32. Annett M. A classification of hand preference by association analysis. Br J Psychol 1970;61:303-321. https://doi.org/10.1111/j.2044-8295.1970.tb01248.x
  33. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 197;9:97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  34. Fazio R, Coenen C, Denney RL. The original instructions for the Edinburgh Handedness Inventory are misunderstood by a majority of participants. Laterality 2012;17:70-77. https://doi.org/10.1080/1357650X.2010.532801
  35. Edlin JM, Leppanen ML, Fain RJ, Hacklander RP, Hanaver-Torrez SD, Lyle KB. On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn 2015;94:44-51. https://doi.org/10.1016/j.bandc.2015.01.003
  36. Verdino M, Dingman S. Two measures of laterality in handedness: the Edinburgh Handedness Inventory and the Purdue Pegboard test of manual dexterity. Percept Mot Skills 1998;86:476-478. https://doi.org/10.2466/pms.1998.86.2.476
  37. Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, et al. Asymmetry in the human motor cortex and handedness. Neuroimage 1996;4(3 Pt 1):216-222. https://doi.org/10.1006/nimg.1996.0073
  38. Herve PY, Crivello F, Perchey G, Mazoyer B, Tzourio-Mazoyer N. Handedness and cerebral anatomical asymmetries in young adult males. Neuroimage 2006;29:1066-1079. https://doi.org/10.1016/j.neuroimage.2005.08.031
  39. Foundas AL, Leonard CM, Heilman KM. Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch Neurol 1995;52:501-508. https://doi.org/10.1001/archneur.1995.00540290091023
  40. Anstey KJ, Maller JJ, Meslin C, Christensen H, Jorm AF, Wen W, et al. Hippocampal and amygdalar volumes in relation to handedness in adults aged 60-64. Neuroreport 2004;15:2825-2829.
  41. Ifthikharuddin SF, Shrier DA, Numaguchi Y, Tang X, Ning R, Shibata DK, et al. MR volumetric analysis of the human basal ganglia: normative data. Acad Radiol 2000;7:627-634. https://doi.org/10.1016/S1076-6332(00)80579-6
  42. Peterson BS, Riddle MA, Cohen DJ, Katz LD, Smith JC, Leckman JF. Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging 1993;11:493-498. https://doi.org/10.1016/0730-725X(93)90468-S
  43. Gunning-Dixon FM, Head D, McQuain J, Acker JD, Raz N. Differential aging of the human striatum: a prospective MR imaging study. AJNR Am J Neuroradiol 1998;19:1501-1507.
  44. Kavaklioglu T, Guadalupe T, Zwiers M, Marquand AF, Onnink M, Shumskaya E, et al. Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct 2017;222:1611-1623. https://doi.org/10.1007/s00429-016-1295-9
  45. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA. White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 2004;14:945-951. https://doi.org/10.1093/cercor/bhh055
  46. McKay NS, Iwabuchi SJ, Haberling IS, Corballis MC, Kirk IJ. Atypical white matter microstructure in left-handed individuals. Laterality 2017;22:257-267. https://doi.org/10.1080/1357650X.2016.1175469
  47. Cherubini A, Peran P, Caltagirone C, Sabatini U, Spalletta G. Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. Neuroimage 2009;48:29-36. https://doi.org/10.1016/j.neuroimage.2009.06.035

피인용 문헌

  1. Social support modulates the association between PTSD diagnosis and medial frontal volume in Chinese adults who lost their only child vol.13, pp.None, 2017, https://doi.org/10.1016/j.ynstr.2020.100227