DOI QR코드

DOI QR Code

Water-Splitting and Highly Active Catalysts Technology for CO2 Reduction

물 분해와 CO2 환원을 위한 고활성 촉매기술

  • 정평진 (한국과학기술정보연구원)
  • Received : 2016.12.15
  • Accepted : 2017.08.10
  • Published : 2017.09.30

Abstract

Currently, exhaust gas emitted from thermal power plants and various combustion facilities that consume large amounts of fossil fuels such as coal, oil, and natural gas contains high concentrations of $CO_2$ and is a major cause of global warming. Conventionally, as a countermeasure against this problem, research and development are being carried out from various fields, and it is considered to be one of the most promising methods for separating and recovering $CO_2$ in the exhaust gas. One of the reasons for the low use of carbon dioxide is oxidized among the carbon compounds and is present in the most stable state. From the viewpoint of $CO_2$ emissions, $CO_2$ immobilization technology, which converts $CO_2$ into chemically useful compounds, is considered to be more important.

현재, 석탄이나 석유, 천연가스 등의 화석연료를 대량으로 소비하는 화력발전소나 각종 연료시설로부터 배출되는 배기가스에는 고농도의 $CO_2$가 포함되어 있으며, 지구온난화의 주된 원인으로 되어 있다. 종래, 이 대책법으로서 다방면으로부터 연구개발이 수행되고 있으며, 배기가스 중의 $CO_2$를 분리 회수하여 처분하는 것도 매우 유망한 방법의 하나라고 생각되고 있다. 이산화탄소의 화학적 이용이 적은 이유의 하나는, 이산화탄소가 탄소화합물 중에서도 산화되어 가장 안정한 상태로 존재하기 때문이다. $CO_2$ 배출의 관점에서 앞으로 $CO_2$를 화학적으로 유용한 화합물로 변환시키는 $CO_2$ 고정화 기술이 더욱 중요하다고 생각된다.

Keywords

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki, Y. Taga, 2001, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides", Science, 293, pp.269-271 https://doi.org/10.1126/science.1061051
  2. R. Nishiro, H. Kato, A. Kudo, 2005, "Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions", Phys. Chem. Chem. Phys., 7, pp.2241-2245 https://doi.org/10.1039/b502147b
  3. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, 2007, "Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production", Catal. Today, 122, pp.54-61
  4. M. Anpo, M. Takeuchi, 2003, "The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation", J. Catal., 216, pp.505-516 https://doi.org/10.1016/S0021-9517(02)00104-5
  5. M. Kitano, K. Iyatani, K. Tsujimaru, M. Matsuoka, M. Ueshima, J.M. Thomas, M. Anpo, 2008, "The Effect of Chemical Etching by HF Solution on the Photocatalytic Activity of Visible Light-responsive TiO2 Thin Films for Solar Water Splitting", Top. Catal., 49, pp.24-31 https://doi.org/10.1007/s11244-008-9064-5
  6. M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, 1995, "Photocatalytic reduction of CO2 with H2O on various titanium oxide", catalysts J. Electroanal. Chem., 396, pp.21-26 https://doi.org/10.1016/0022-0728(95)04141-A
  7. K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, 2001, "Photocatalytic Reduction of CO2 with H2O on Ti−${\beta}$ Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties", J. Phys. Chem. B. Vol. 105, No. 35, pp. 8350-8355 https://doi.org/10.1021/jp010885g
  8. W. Lin, H. Han, H. Frei, 2004, "CO2 Splitting by H2O to CO and O2 under UV Light in TiMCM-41 Silicate Sieve", J. Phys. Chem. B, Vol. 108, No. 47, pp.18269-18273 https://doi.org/10.1021/jp040345u
  9. W. Lin, H. Frei, 2006, "Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve", C. R. Chimie, 9, pp.207-213 https://doi.org/10.1016/j.crci.2005.05.023
  10. M. Anpo, 2004, "Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation". Bull. Chem. Soc. Jpn., 77, pp.1427-1442 https://doi.org/10.1246/bcsj.77.1427
  11. T.-H. Kim, M. Saito, M. Matsuoka, S. Tsukada, K. Wada, M. Anpo, 2009, "Photocatalytic oxidation of ethanethiol on a photoelectrochemical circuit system consisting of a rod-type TiO2 electrode and a silicon solar cell"Res. Chem. Intermed., Vol. 35, No. 5, pp.633-642 https://doi.org/10.1007/s11164-009-0060-6
  12. S. Inoue, H. Koinuma, T. Tsuruta, 1969, "Copolymerization of carbon dioxide and epoxide", J. Polym. Sci. Part B: Polym. Lett., 7, pp.287-292, 1969. https://doi.org/10.1002/pol.1969.110070408
  13. S. Inoue, H. Koinuma, T. Tsuruta, "Copolymerization of carbon dioxide and epoxide with organometallic compounds" Makromol. Chem., 130, pp.210-220
  14. Y. Li, H. Shimizu, 2009, "Compatibilization by Homopolymer: Significant Improvements in the Modulus and Tensile Strength of PPC/PMMA Blends by the Addition of a Small Amount of PVAc", Appl. Mater. Intreface, 1, pp.1650-1655 https://doi.org/10.1021/am900314k
  15. Y. Tao, X. Wang, X. Zhao, J. Li, F. Wang, 2006, "Crosslinkable poly(propylene carbonate): High-yield synthesis and performance improvement" J. Polym. Sci.: Part A: Polym. Chem., 44, pp.5329-5336 https://doi.org/10.1002/pola.21595
  16. S. Inoue, H. Koinuma, T. Tsuruta, 1969, "Copolymerization of carbon dioxide and epoxide", J. Polym. Sci., Part B: Polym. Lett., 7, pp.287-292 https://doi.org/10.1002/pol.1969.110070408
  17. B. Ochiai, T. Endo, 2005, "Carbon dioxide and carbon disulfide as resources for functional polymers", Prog. Polym. Sci., 30, pp.183-215 https://doi.org/10.1016/j.progpolymsci.2005.01.005
  18. N. Kihara, T. Endo, 1993, "Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure", J. Org. Chem., Vol. 58, No. 23, pp.6198-6202 https://doi.org/10.1021/jo00075a011
  19. B. Ochiai, T. Endo, 2007, "Polymer-supported pyridinium catalysts for synthesis of cyclic carbonate by reaction of carbon dioxide and oxirane", J. Phys. Sci., Part A: Polym. Chem., 45, pp.5673-5678 https://doi.org/10.1002/pola.22316
  20. B. Ochiai, T, Iwamoto, T. Endo, 2006, "Selective gas-solid phase fixation of carbon dioxide into oxirane-containing polymers: synthesis of polymer bearing cyclic carbonate group", Green Chem., 8, pp.138-140 https://doi.org/10.1039/b516881c
  21. B. Ochiai, Y, Hatano, T. Endo, 2008, "Fixing Carbon Dioxide Concurrently with Radical Polymerization for Utilizing Carbon Dioxide by Low-Energy Cost"Macromolecules, Vol. 41, No. 24, pp.9937-9938 https://doi.org/10.1021/ma801960q
  22. T. Endo, D. Nagai, T. Monma, H. Yamaguchi, B. Ochiai, 2004, "A Novel Construction of a Reversible Fixation-Release System of Carbon Dioxide by Amidines and Their Polymers", Macromolecules, Vol. 37, No. 6, pp.2007-2009 https://doi.org/10.1021/ma0305479
  23. B. Ochiai, K. Yokota, A. Fujii, D. Nagai, T. Endo, 2008, Reversible trap-release of CO2 by polymers bearing DBU and DBN moieties", Macromolecules, Vol. 41, No. 4, pp.1229-1239 https://doi.org/10.1021/ma702189a
  24. B. Barkakaty, K. Morino, A. Sudo, T. Endo, 2010, "Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides", Green Chem., 12, pp.42-44 https://doi.org/10.1039/B916235F
  25. T. Iwasaki, N. Kihara, T. Endo, 2000, "Reaction of Various Oxiranes and Carbon Dioxide. Synthesis and Aminolysis of Five-Membered Cyclic Carbonates", Bull. Chem. Soc. Jpn., 73, pp.713-719 https://doi.org/10.1246/bcsj.73.713
  26. H. Tomita, F. Sanda, T. Endo, 2001, "Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ringopening direction in the reaction of five-membered cyclic carbonates with amine", Polym. Sci. Part A: Polym. Chem., 39, pp.3678-3685, https://doi.org/10.1002/pola.10009
  27. N. Kihara, T. Endo, 1993, "Synthesis and properties of poly(hydroxyurethane)s", J. Polym. Sci., Part A: Polym. Sci., 31, pp.2765-2773 https://doi.org/10.1002/pola.1993.080311113
  28. H. Tomita, F. Sanda, T. Endo, 2001, "Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction, 1996, "J. Polym. Sci., Part A: Polym. Chem., 39, pp.851-859 https://doi.org/10.1002/1099-0518(20010315)39:6<851::AID-POLA1058>3.0.CO;2-3
  29. N. Kihara, Y. Kushida, T. Endo, "Optically active poly(hydroxyurethane)s derived from cyclic carbonate and L-lysine derivatives", J. Polym. Sci., Part A: Polym. Chem., 34, pp.2173-2179
  30. B. Ochiai, J.I. Nukayama, M. Mashiko, Y. Kaneko, T. Endo, 2005, "Synthesis and crosslinking reaction of poly(hydroxyurethane) bearing a secondary amine structure in the main chain", J. Polym. Sci., Part A: Polym. Chem., 43, pp. 5899-5905 https://doi.org/10.1002/pola.21078
  31. B. Ochiai, S. Inoue, T. Endo, 2005, "One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine", J. Polym. Sci., Part A: Polym. Chem., 43, pp. 6613-6618 https://doi.org/10.1002/pola.21103
  32. B. Ochiai, S. Inoue, T. Endo, 2005, "Salt effect on polyaddition of bifunctional cyclic carbonate and diamine", J. Polym. Sci., Part A: Polym. Chem., 43, pp.6282-6286, https://doi.org/10.1002/pola.21081
  33. B. Ochiai, Y. Satoh, T. Endo, 2005, "Nucleophilic polyaddition in water based on chemo-selective reaction of cyclic carbonate with amine", Green Chem., 7, pp.765-767 https://doi.org/10.1039/b511019j
  34. B. Ochiai, Y. Satoh, T. Endo, 2009, "Polyaddition of bifunctional cyclic carbonate with diamine in ionic liquids: In situ ion composite formation and simple separation of ionic liquid", J. Polym. Sci., Part A: Polym. Chem., 47, pp.4629-4635 https://doi.org/10.1002/pola.23514
  35. B. Ochiai, S.I. Satoh, T. Endo, 2007, "Crosslinkable polyurethane bearing a methacrylate structure in the side chain", J. Polym. Sci., Part A: Polym. Chem., 45, pp.3400-3407, https://doi.org/10.1002/pola.22092
  36. B. Ochiai, S.I. Satoh, T. Endo, 2007, "Synthesis and properties of polyurethanes bearing urethane moieties in the side chain", J. Polym. Sci., Part A: Polym. Chem., 45, pp.3408-3414 https://doi.org/10.1002/pola.22093