참고문헌
- 今井 拓司, 2016.11.18, ますます過熱するAI硏究, 新成果が日米歐から續續-日本は應用に力点, 歐米は深層學習を高度化, http://techon.nikkeibp.co.jp/atcl/mag/15/320925/111100114/
- 竹內 孝明, 2016.06.21, Article人工知能(AI)とは?非エンジニアのための よくわかる人工知能, https://thefinance.jp/fintech/160621
- Yevgeniy Sverdlik, 18 May 2016, "Google TPU Server" "Google Has Built Its Own Custom Chip for AI Servers", http://www.datacenterknowledge.com/archives/2016/05/18/google-alphago-powered-custom-ai-chip/
- Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-Yeon Wei, David Brooks(Harvard University), 2016/05, "Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators" http://vlsiarch.eecs.harvard.edu/wp-content/uploads/2016/05/reagen_isca16.pdf
- 今井 拓司, 2016, "猫も杓子もAIチップ, 方式亂立で當面は混戰-メニ一コア, FPGA, 專用チップも", 日經エレクトロニクス 2016年10月號 http://techon.nikkeibp.co.jp/atcl/mag/15/320925/091300104/?n_cid=nbptec_tecml
- Toru Baji, 2016, "GTC Japan 2016. NVIDIA AI DRIVING PLATFORM. AND AI SUPERCOMPUTER XAVIER", https://www.gputechconf.jp/assets/files/1062.pdf
- https://www.google.co.jp/search?q=nvidia+dgx-1&biw=1251&bih=682&source=lnms&tbm=isch&sa=X&sqi=2&ved=0ahUKEwie253f9ITQAhXBgLwKHYZ-AEwQ_AUIBygC&dpr=1.25
- VIDIA Deep Learning System https://images.nvidia.com/content/technologies/deep-learning/pdf/61681-DB2-Launch-Datasheet-Deep-Learning-Letter-WEB.pdf
- T.P.Morgan, April 6, 2016, "DGX-1 Is Nvidia's Deep Learning System For Newbies", https://www.nextplatform.com/2016/04/06/dgx-1-nvidias-deep-learning-system-newbies/
- D. Shapiro, posted Sept. 28, 2016, "Introducing Xavier, the NVIDIA AI Supercomputer for the Future of Autonomous Transportatiopn", https://blogs.nvidia.com/blog/2016/09/28/xavier/
- "CNN實裝にFPGAが最適な理由", 日經テクノロジ一 online SPECIAL http://special.nikkeibp.co.jp/atcl/TEC/16/081900037/?
- 今井 拓司, 2016, "エッジからクラウドまで握る, IntelがAI戰略を發表", http://techon.nikkeibp.co.jp/atcl/news/16/111805123
- http://images.nvidia.com/content/APAC/events/deep-learning-day-2016-jp/summer/NV-DL-01-Murakami.pdf
- DataVec: A Vectorization and ETL Library (https://deeplearning4j.org/datavec)
- 西川 徹, 2016, "製造業とディ一プ.ラ一ニング", http://www.meti.go.jp/committee/sankoushin/shin_sangyoukouzou/pdf/004_05_00.pdf
- http://www.fanuc.co.jp/ja/whatnews/notice/osirase20160418.html
- 大塚昭彦, 2016, "シスコが産業ロボットのァナックと協業, IoTで停止ゼロ工場へ", TECH.ASCII.jp http://ascii.jp/elem/000/001/108/1108451/(2016-01-22)
- "Industry deep learning: https://www.gputechconf.jp/assets/files/1029.pdf
- https://www.google.co.jp/search?q=%E3%80%8CAmazon+Picking+Challenge%E3%80%8D2016+%E3%82%A2%E3%82%A4%E3%83%86%E3%83%A0%E3%81%A8%E3%81%9F%E3%81%AA&biw=1242&bih=682&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjK9vC7g4TQAhXIgrwKHUrcAEwQ_AUICCgD&dpr=1.25#imgrc=GxScYUFxnS5aKM%3A
- https://blogs.nvidia.com/blog/2016/08/12/warehous-automation-amazon-picking-challenge
- 進藤 智則, 2015, "ファナックとPFN, 能動學習で敎示レスのばら積みピッキング實演", 日經 Robotics 2015/12/02 17:57,
- Levine, S., Wagnener, N., Abbeel, P., 2015, "Learning Contact-Rich Manipulation Skill with Guided Policy Search", arXiv: 1501.05611v2[cs.RO] 26 Feb
- Levine, S., Finn, C., Darrell, T. and Abbeel, P., 2015, "End-to-end training of deep visuomotor policies", arXiv preprint arXive:1504.00702, 20142.
- Y. Matsuo, 2015, "The Future of artificail Intelligence and the emerging potential of data sharing", 情報管理(일본) Vol. 58, No. 8, pp597-605
- Wigley, P. B., Everitt, P. J., van den Hengel, A., Bastian, J. W., Sooriyabandara, M. A., Mc-Donald, G. D., Hardman, K. S., Quinlivan, C. D., Manju, P., Kuhn, C. C. N., Petersen, I.R., Luiten, A. N., Hope, J. J., Robins, N. P., Hush, M. R., 2016, "Fast machine-learning online optimization of ultra-cold-atome experiments", Scientific Reports [6:25890] DOI:10:1038/srep25890, 16 May https://doi.org/10.1038/srep25890
- 總務省, 2016.7.7, 新たな情報通信技術戰略の在り方 第二次中間答申 (案) について, www.soumu.go.jp/main_content/000428757.pdf
- Luke Durant, Olivier Giroux, Mark Harris and Nick Stam, "Inside Volta: The World's Most Advanced Data Center GPU", https://devblogs.nvidia.com/parallelforall/inside-volta/
- Walton, Mark, "Nvidia Tesla V100: First Volta GPU is one of the largest silicon chips ever", https://arstechnica.com/gadgets/2017/05/nvidia-tesla-v100-gpu-details/