DOI QR코드

DOI QR Code

제조업의 심층신경망 기계학습(딥러닝)

Deep Neural Net Machine Learning and Manufacturing

  • 조만 (한국과학기술정보연구원 ReSEAT 프로그램) ;
  • 이민국 (한국과학기술정보연구원 미래정보연구센터)
  • CHO, Mann (ReSEAT Program, Korea Institute of Science and Technology Information) ;
  • Lee, Mingook (Korea Institute of Science and Technology Information)
  • 투고 : 2016.11.16
  • 심사 : 2017.07.25
  • 발행 : 2017.09.30

초록

인공지능 특히 심층신경망기계학습기법(딥러닝)의 제조업분야에서의 이용이 효율적이며 실용적일 수 있다는 인식이 넓게 수용되고 있다 이 보고서는 최근의 신경망기계학습 개발환경을 개관하고 제조업분야에서 활용되고 있는 딥 러닝기술을 개관한다.

In recent years, the use of artificial intelligence technology such as deep neural net machine learning(deep learning) is becoming an effective and practical option in industrial manufacturing process. This study focuses on recent deep learning development environments and their applications in the manufacturing field.

키워드

참고문헌

  1. 今井 拓司, 2016.11.18, ますます過熱するAI硏究, 新成果が日米歐から續續-日本は應用に力点, 歐米は深層學習を高度化, http://techon.nikkeibp.co.jp/atcl/mag/15/320925/111100114/
  2. 竹內 孝明, 2016.06.21, Article人工知能(AI)とは?非エンジニアのための よくわかる人工知能, https://thefinance.jp/fintech/160621
  3. Yevgeniy Sverdlik, 18 May 2016, "Google TPU Server" "Google Has Built Its Own Custom Chip for AI Servers", http://www.datacenterknowledge.com/archives/2016/05/18/google-alphago-powered-custom-ai-chip/
  4. Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-Yeon Wei, David Brooks(Harvard University), 2016/05, "Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators" http://vlsiarch.eecs.harvard.edu/wp-content/uploads/2016/05/reagen_isca16.pdf
  5. 今井 拓司, 2016, "猫も杓子もAIチップ, 方式亂立で當面は混戰-メニ一コア, FPGA, 專用チップも", 日經エレクトロニクス 2016年10月號 http://techon.nikkeibp.co.jp/atcl/mag/15/320925/091300104/?n_cid=nbptec_tecml
  6. Toru Baji, 2016, "GTC Japan 2016. NVIDIA AI DRIVING PLATFORM. AND AI SUPERCOMPUTER XAVIER", https://www.gputechconf.jp/assets/files/1062.pdf
  7. https://www.google.co.jp/search?q=nvidia+dgx-1&biw=1251&bih=682&source=lnms&tbm=isch&sa=X&sqi=2&ved=0ahUKEwie253f9ITQAhXBgLwKHYZ-AEwQ_AUIBygC&dpr=1.25
  8. VIDIA Deep Learning System https://images.nvidia.com/content/technologies/deep-learning/pdf/61681-DB2-Launch-Datasheet-Deep-Learning-Letter-WEB.pdf
  9. T.P.Morgan, April 6, 2016, "DGX-1 Is Nvidia's Deep Learning System For Newbies", https://www.nextplatform.com/2016/04/06/dgx-1-nvidias-deep-learning-system-newbies/
  10. D. Shapiro, posted Sept. 28, 2016, "Introducing Xavier, the NVIDIA AI Supercomputer for the Future of Autonomous Transportatiopn", https://blogs.nvidia.com/blog/2016/09/28/xavier/
  11. "CNN實裝にFPGAが最適な理由", 日經テクノロジ一 online SPECIAL http://special.nikkeibp.co.jp/atcl/TEC/16/081900037/?
  12. 今井 拓司, 2016, "エッジからクラウドまで握る, IntelがAI戰略を發表", http://techon.nikkeibp.co.jp/atcl/news/16/111805123
  13. http://images.nvidia.com/content/APAC/events/deep-learning-day-2016-jp/summer/NV-DL-01-Murakami.pdf
  14. DataVec: A Vectorization and ETL Library (https://deeplearning4j.org/datavec)
  15. 西川 徹, 2016, "製造業とディ一プ.ラ一ニング", http://www.meti.go.jp/committee/sankoushin/shin_sangyoukouzou/pdf/004_05_00.pdf
  16. http://www.fanuc.co.jp/ja/whatnews/notice/osirase20160418.html
  17. 大塚昭彦, 2016, "シスコが産業ロボットのァナックと協業, IoTで停止ゼロ工場へ", TECH.ASCII.jp http://ascii.jp/elem/000/001/108/1108451/(2016-01-22)
  18. "Industry deep learning: https://www.gputechconf.jp/assets/files/1029.pdf
  19. https://www.google.co.jp/search?q=%E3%80%8CAmazon+Picking+Challenge%E3%80%8D2016+%E3%82%A2%E3%82%A4%E3%83%86%E3%83%A0%E3%81%A8%E3%81%9F%E3%81%AA&biw=1242&bih=682&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjK9vC7g4TQAhXIgrwKHUrcAEwQ_AUICCgD&dpr=1.25#imgrc=GxScYUFxnS5aKM%3A
  20. https://blogs.nvidia.com/blog/2016/08/12/warehous-automation-amazon-picking-challenge
  21. 進藤 智則, 2015, "ファナックとPFN, 能動學習で敎示レスのばら積みピッキング實演", 日經 Robotics 2015/12/02 17:57,
  22. Levine, S., Wagnener, N., Abbeel, P., 2015, "Learning Contact-Rich Manipulation Skill with Guided Policy Search", arXiv: 1501.05611v2[cs.RO] 26 Feb
  23. Levine, S., Finn, C., Darrell, T. and Abbeel, P., 2015, "End-to-end training of deep visuomotor policies", arXiv preprint arXive:1504.00702, 20142.
  24. Y. Matsuo, 2015, "The Future of artificail Intelligence and the emerging potential of data sharing", 情報管理(일본) Vol. 58, No. 8, pp597-605
  25. Wigley, P. B., Everitt, P. J., van den Hengel, A., Bastian, J. W., Sooriyabandara, M. A., Mc-Donald, G. D., Hardman, K. S., Quinlivan, C. D., Manju, P., Kuhn, C. C. N., Petersen, I.R., Luiten, A. N., Hope, J. J., Robins, N. P., Hush, M. R., 2016, "Fast machine-learning online optimization of ultra-cold-atome experiments", Scientific Reports [6:25890] DOI:10:1038/srep25890, 16 May https://doi.org/10.1038/srep25890
  26. 總務省, 2016.7.7, 新たな情報通信技術戰略の在り方 第二次中間答申 (案) について, www.soumu.go.jp/main_content/000428757.pdf
  27. Luke Durant, Olivier Giroux, Mark Harris and Nick Stam, "Inside Volta: The World's Most Advanced Data Center GPU", https://devblogs.nvidia.com/parallelforall/inside-volta/
  28. Walton, Mark, "Nvidia Tesla V100: First Volta GPU is one of the largest silicon chips ever", https://arstechnica.com/gadgets/2017/05/nvidia-tesla-v100-gpu-details/