DOI QR코드

DOI QR Code

Elicitation of Indole-3-ylmethyl Glucosinolate Biosynthesis in Turnip Culture Cells and Their Relationship with Plant Resistance to Botrytis cinerea

잿빛곰팡이병 추출물을 이용한 순무배양세포의 Indole-3-ylmethyl glucosinolate의 생합성유도와 병원성연구

  • Kwon, Soon Tae (Department of Horticulture and Breeding, Andong National University) ;
  • Zhang, Vivian (Department of Plant Science, University of California)
  • 권순태 (안동대학교 원예육종학과) ;
  • Received : 2017.05.16
  • Accepted : 2017.10.23
  • Published : 2017.10.31

Abstract

Two different races of Botryris cinerea were selected by the response of plant leaves to the pathogen infection. Based on lesion size of the pathogen on the leaves, turnip showed susceptible response to 'Grape-01' race, and resistant to 'Orange' race. Turnip leaves infected with resistant pathogen race, "Orange", showed significantly higher content of indole-3-ylmethyl glucosinolate (I3M) than those infected with susceptible race, 'Grape-01'. Contents of I3M in the leaves with resistant 'Orange' race was 2.5 times as high as that in uninfected leaves, whereas I3M in the leaves infected with susceptible 'Grape-01' race showed lower content than in untreated leaves. Growth of turnip suspension cells was significantly inhibited by the treatment of MeOH extract or water extract of 'Orange' race as compared with the treatment of susceptible race, 'Grape-01'. Treatment of MeOH or water extract from 'Orange' race to turnip suspension cells, strongly inhibited cell viability up to 22.7% or 16.5%, respectively. However, plant cells treated with MeOH or water extract from resistant race, 'Orange' showed higher I3M content than that from susceptible race, 'Grape-01'. These results suggest that accumulation and degradation of I3M glucosinolate in turnip cells closely related to the resistance and susceptibility of turnip cells to Botrytis cinerea.

8종의 잿빛곰팡이병 균주를 순무잎에 접종하여 병반의 크기를 확인한 결과 가장 강한 감염력을 보인 '포도-01' 균주와 병반의 확산이 가장 적은 '오랜지'를 선발하였다. 순무잎이 저항성을 보인 '오랜지'균주를 처리한 잎이 감수성을 보인 '포도-01'균주를 처리한 잎보다 indole-3-ylmethyl glucosinolate (I3M-GLS) 함량이 무처리 보다 2.5배 이상 높았으나 '포도-01' 균주를 처리한 잎에서는 무처리 보다 낮은 함량을 보였다. 균주의 메탄올 추출액과 물추출물을 식물배양세포에 처리한 결과 '오랜지'균주의 추출물이 '포도-01' 균주의 추출물보다 배양세포의 생장을 더 강하게 억제 한 것으로 나타났는데 '오랜지' 균주의 메타놀 및 물 추출물 처리에서 배양세포의 활력은 각각 22.7% 및 16.5% 감소시키는 것으로 나타났다. 한편 '오랜지'균주 추출물을 처리한 배양세포에서 I3M-GLS의 생합성이 '포도-01' 균주 추출물보다 현저히 높은 것으로 나타났다. 본 결과로 보아 식물체내에 생합성되는 I3M-GLS 함량은 잿빛곰팡이균에 대한 식물세포의 저항성과 밀접한 관계가 있는 것으로 판단된다.

Keywords

References

  1. Angelini, L., L. Lazzeri, S. Galletti, A. Cozzani, M. Macchia and S. Palmieri. 1998. Antigerminative activity of three glucosinolate-derived products generated by myrosinase hydrolysis. Seed Science and Technology 26:771-779.
  2. Barth, C. and G. Jander. 2006. Arabidopsis myrosinase TGG1 and TGG2 have redundant function in glucosinolate break down and insect defense. Plant J. 46:549-562. https://doi.org/10.1111/j.1365-313X.2006.02716.x
  3. Chappell, J. 1995. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:521-47. https://doi.org/10.1146/annurev.pp.46.060195.002513
  4. Chappell, J., R. Nable, P. Fleming, R.A. Andersen and H.R. Burton. 1987. Accumulation of capsidiol in tobacco cell cultures treated with fungal elicitor. Phytochemistry 26: 2259-2260. https://doi.org/10.1016/S0031-9422(00)84695-6
  5. Denby, K.J., P. Kumar and D.J. Kliebenstein. 2004. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thalina. Plant J. 38:473-486. https://doi.org/10.1111/j.0960-7412.2004.02059.x
  6. Fenwick, G.R., R.K. Heaney and W.J. Mullin. 1983. Glucosinolate and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr. 18:123-201. https://doi.org/10.1080/10408398209527361
  7. Glivetic, T., K. Delonga and J. Vorkapic-Furac. 2008. Glucosinolates and their potential role in plant. Periodicum Biologorum 110:297-309.
  8. Hansen, B.G., R.E. Kerwin, J.A Ober, V.M. Lambrix, T. Michell-Olds, J. Gershenzon, B.A. Halkier and D.J. Kliebenstein. 2008. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 148:2096-2108. https://doi.org/10.1104/pp.108.129981
  9. Kato, H., O. Kodama and T. Akatsuka. 1995. Characterization of an inducible P450 hydroxylase involved in the rice diterpene phytoalexin biothynthetic pathway. Arch. of Biochem. Biophys. 316:707-712. https://doi.org/10.1006/abbi.1995.1094
  10. Kliebenstein, D.J., J. Gershenzon and T. Mitchell-Oldss. 2001. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thalina leaves and seeds. Genetics 159:350-370.
  11. Kliebenstein, D.J., J. Kroymann, P. Brown, A. Figuth, D. Pedersen, J. Gershenzon and T.Mitchell-Olds. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126:811-825. https://doi.org/10.1104/pp.126.2.811
  12. Kwon, S.T. and S.M. OH. 1999. Elicitor-inducible phytoalexin from cell suspension cultures of pepper (Capsicum annuum L.) Korean J. Life Science 9:408-413 (in Korean).
  13. Kwon, S.T. and D.J. Kliebenstein. 2014. Response of turnip to Botrytis cinerea infection and their relationship with glucosinolate profiles. Korean J. Plant Res. 27:371-379 (in Korean). https://doi.org/10.7732/kjpr.2014.27.4.371
  14. Mithen, R. 1992. Leaf glucosinolate profile and their relationship to pest and disease resistance in oilseed rape. Euphytica 63:71-83. https://doi.org/10.1007/BF00023913
  15. Murashige, T. and F. Skoog. 1962. Revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15:473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Pedras, M.S.C., E.E. Yaya and E. Glawischnig. 2011. The phytoalexins from cultivated and wild crucifers: Chemistery and biology. Nat. Prod. Rep. 28:1381-1405. https://doi.org/10.1039/c1np00020a
  17. Pedras, M.S.C. and V.K.S. Mamillapalle. 2012. The cruciferous phytoalexins rapalexin A, brussalexin A and erucalexin: Chemistry and metabolism in Leptosphaeria maculans. Bioorganics & Medicinal Chem. 20:3991-3996. https://doi.org/10.1016/j.bmc.2012.05.020
  18. Rowe, H.C. and D.J. Kliebenstein. 2008. Complex genetic control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:2237-2250. https://doi.org/10.1534/genetics.108.091439
  19. Rowe, H.C. and D.J. 2007. Elevated genetic variation within virulence associated Botrytis cinerea polygalacturonase loci. Mol. Plant-Microbe Interact. 20:1126-1137. https://doi.org/10.1094/MPMI-20-9-1126
  20. Schuler, M.A. 1996. Plant cytochrome P450 monooxygenases. Critical Rev. in Plant Sci. 15:235-284. https://doi.org/10.1080/07352689609701942
  21. Yu, H. and J.C. Sutton. 1997. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Canadian J. of Plant Pathology 19 (3):237-246. https://doi.org/10.1080/07060669709500518
  22. Zhang, W., S.T. Kwon, F. Chen and D.J. Kliebenstein. 2016. Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea. Frontiers in Plant Science 7:1-13.