DOI QR코드

DOI QR Code

Genetic Variation and Phylogenetic Relationship of Taraxacum Based on Chloroplast DNA (trnL-trnF and rps16-trnK) Sequences

엽록체 DNA (trnL-trnF, rps16-trnK) 염기서열에 의한 국내 민들레속 유전자원의 유전적 변이와 유연관계 분석

  • Ryu, Jaihyunk (Advanced Radiation Technology Institute, Korea Atomic Energy Research) ;
  • Lyu, Jae-il (Center for Plant Aging Research, Institute for Basic Science (IBS)) ;
  • Bae, Chang-Hyu (Department of Plant Production Sciences, Graduate School of Sunchon National University)
  • 류재혁 (한국원자력연구원 정읍첨단방사선연구소 방사선육종연구실) ;
  • 유재일 (기초과학연구원 식물노화수명연구단) ;
  • 배창휴 (순천대학교 대학원 식물생산과학부)
  • Received : 2017.09.25
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

This study was investigated genetic variation in 24 Taraxacum accessions from various regions in South Korea based on the sequences of two chloroplast DNA (cpDNA) regions (trnL-trnF and rps16-trnK). T. mongolicum, T. officinale, and T. laevigatum were triploid, and T. coreanum and T. coreanum var. flavescens were tetraploid. The trnL-trnF region in native Korean dandelions (T. mongolicum, T. coreanum, and T. coreanum var. flavescens) were ranged from 931 to 935 bp in length, and that of naturalized dandelions were ranged from 910 bp (T. officinale) to 975 bp (T. laevigatum) in length. The rps16-trnK region in T. mongolicum, T. coreanum, T. coreanum var. flavescens, T. officinale, and T. laevigatum was 882-883 bp, 875-881 bp, 878-883 bp, 874-876 bp, and 847-876 bp, respectively, in length. The sequence similarity matrix of the trnL-trnF region ranged from 0.860 to 1.00 with an average of 0.949, and that of the rps16-trnK region ranged from 0.919 to 1.000 with an average of 0.967. According to the phylogenetic analysis, the Korean native taxa and naturalized taxa were divided independent clade in two cpDNA region. T. coreanum var. flavescens clustered only with T. coreanum, and there were no significant differences in their nucleotide sequences. The finding that two accessions (T. coreanum; Jogesan, T. mongolicum; Gangyang) had a high level of genetic variation suggests their utility for breeding materials.

다양한 환경에서 수집한 국내 민들레속 유전자원 수집종의 엽록체 DNA 영역(trnL-trnF와 rps16-trnK) 염기서열을 이용하여 종내 간 변이 및 배수성을 구명하여 유전자원 육성의 기초자료를 제공하고자 수행하였다. 민들레속 유전자원의 배수성은 털민들레, 서양민들레, 붉은씨서양민들레가 3배체이고, 흰민들레와 흰노랑민들레는 4배체였다. 염기서열의 길이는 trnLtrnF 영역에서 자생종류인 털민들레, 흰민들레, 흰노랑민들레가 931 bp에서 935 bp, 서양민들레는 910 bp, 붉은씨서양민들레는 975 bp로 종간 차이를 나타내었고, 종 특이적 염기서열 88개, 자생종 및 귀화종 특이적 염기서열 41개가 검출되었다. rps16-trnK 영역은 털민들레 882~883 bp, 흰민들레 875~881 bp, 흰노랑민들레는 878~883 bp 서양민들레 874~876 bp, 붉은씨서양민들레는 847~848 bp로 37개 종특이적 염기서열이 검출되었다. 염기서열의 유사도는 trnL-trnF 영역에서 0.860~1.000 사이로 평균 0.949이며, rps16-trnK 영역의 유사도는 0.919~1.000 사이로 평균 0.967이었다. 염기서열을 바탕으로 유연관계를 분석한 결과, trnL-trnF 영역은 크게 자생종류와 귀화종류로 구분되었으며, 서양민들레와 붉은씨서양민들레는 같은 종간에 유집되었고, 자생종류는 분리되지 않았으며, rps16-trnK 4개 그룹과 유집되지 않은 5개체로 나뉘었다. 흰노랑민들레는 두 영역 모두 흰민들레와 동일 계통군을 형성하였고, 염기서열상 두 종간 뚜렷한 차이가 없었다. 유연관계에서 모두독립적으로 존재한 흰민들레 No. 10 (조계산)과 털민들레 1번(광양)은 민들레 유전자원 육성소재로 활용이 기대된다.

Keywords

References

  1. Boo, D. and S.J. Park. 2016. Molecular phylogenetic study of Korean Tilia L. Korean J. Plant Res. 29(5):547-554 (in Korean). https://doi.org/10.7732/kjpr.2016.29.5.547
  2. Chon, S.U., C.H. Bae and S.C. Lee. 2012. Antioxidant and cytotoxic potentials of methanol extracts from Taraxacum officinale F. H. Wigg. at different plant parts. Korean J. Plant Res. 25(2):232-239 (in Korean). https://doi.org/10.7732/kjpr.2012.25.2.232
  3. Fang, G., S. Hammar and R. Grumet. 1992. A quick inexpensive method of removing ploysaccharides from plant genomic DNA. Biotechniques 13:52-55.
  4. Huh, M.K., H.J. Yoon and J.S. Choi. 2011. Phylogenic study of genus Citrus and two relative genera in Korea by trnL-trnF sequence. J. Life Sci. 21(10):1452-1459. https://doi.org/10.5352/JLS.2011.21.10.1452
  5. Huh, M.K., S.K. Oh and B.R. Lee. 2013. Phylogenetic relationships of the genus Hemerocallis in Korea using rps16-trnK sequences in chloroplast DNA. J. Life Sci. 23(7):847-853. https://doi.org/10.5352/JLS.2013.23.7.847
  6. Kim, H.S., K.T. Park and S.J. Park. 2016a. Molecular phylogenetic study of Korean Hydrangea L. Korean J. Plant Res. 29(4):407-418 (in Korean). https://doi.org/10.7732/kjpr.2016.29.4.407
  7. Kim, J.K., J.Y. Park, Y.S. Lee, S.M. Woo, H.S. Park, S.C. Lee, J.H. Kang, T.J. Lee, S.H. Sung and T.J. Yang. 2016b. The complete chloroplast genomes of two Taraxacum species, T. platycarpum Dahlst. and T. mongolicum Hand.-Mazz. (Asteraceae). Mitochondrial DNA Part B. 1:412-413. https://doi.org/10.1080/23802359.2016.1176881
  8. Kitamura, S. 1957. Compositae Japonicae. Mem. Coll. Sci. Univ. Kyoto ser. B, 24:1-42.
  9. Korea National Arboretum. 2017. Nature www.nature.go.kr.
  10. Lee, B.R., S.H. Kim and M.K. Huh. 2010. Phylogenic study of genus Asarum (Aristolochiaceae) in Korea by trnL-trnT region. J. Life Sci. 20(11):1697-1703 (in Korean). https://doi.org/10.5352/JLS.2010.20.11.1697
  11. Lee, C.B. 1993. Illustrated flora of Korea. Hyangmoonsa Press, Seoul, Korea. pp. 783-784.
  12. Lee, Y.N. 1996. Flora of Korea. Kyohak Press, Seoul, Korea. pp. 866-868 (in Korean).
  13. Morita, T. 1976. Geographical distribution of diploid and polyploid Taraxacum in Japan. Bull. Natn. Sci. Mus. 2:23-38.
  14. Martonfiova, L., L. Majesky and P. Martonfi. 2007. Polyploid progeny from cresses between diploid sexuals and tetraploid apomictic pollen donprs in Taraxacum Sect. Ruderalia. Acta Biol. Cracoviensia Ser. Bot. 49(1):47-54.
  15. Ministry of Food and Drug Safety. 2011. The Korean Herbal Pharmacopeia. Korea Administration, Seoul, Korea.
  16. Nakai, T. 1952. A synoptical sketch of Korean flora. Bul. Nat. Sci. Mus. 31:129-135.
  17. Neuhaus, H. and G. Link. 1987. The chloroplast tRNALys (UUU) gene from mustard (Sinapsis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr. Genet. 11:251-257. https://doi.org/10.1007/BF00355398
  18. Richards, A.J. 1973. The origin of Taraxacum agamospecies. Bot. J. Linn. Soc. 66:189-211. https://doi.org/10.1111/j.1095-8339.1973.tb02169.x
  19. Ryu, J.H. 2012. Growth and development characteristics and genetic diversity analysis of genus Taraxacum accessions collected in Korea. Department of Plant Sciences, Ph.D. Thesis, Sunchon Nat'l Univ., Korea.
  20. Ryu, J. and C.B. Bae. 2012. Genetic diversity and relationship analysis of genus Taraxacum accessions collected in Korea. Korean J. Plant Res. 25(3):329-338. https://doi.org/10.7732/kjpr.2012.25.3.329
  21. Shibaike, H., H. Akiyama, S. Uchiyama, K. Kasai and T. Morita. 2002. Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mongolica). 2. Natural hybrids in Japan detected by chloroplast DNA marker. J. Plant Res. 115:321-328. https://doi.org/10.1007/s10265-002-0045-7
  22. Salih, R.H.M., L. Majesky, T. Schwarzacher, R. Gornall and P. Heslop-Harrison. 2017. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): identity and variation between three microspecies. PLoS ONE 12(2): e0168008. https://doi.org/10.1371/journal.pone.0168008
  23. Soltis, P.S., D.E. Soltis and J.J Doyle. 1992. Molecular systematics of plant. Chapman and Hall. New York, USA.
  24. Taberlet, P., L. Gielly, G. Patou and J. Bouvet. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. Pl. Mol. Biol. 17:1105-1109. https://doi.org/10.1007/BF00037152
  25. Thompson, J.D., D.G. Higgins and T.J. Gibsom 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  26. Tsai, L.C., Y.C. Yu, H.M. Hsieh, J.C. Wang, A. Linacre and J.C. Lee. 2006. Species identification using sequences of the trnL intron and the trnL-trnF IGS of chloroplast genome among popular plants in Taiwan. J. Forensic Sci. 164:193-200.
  27. Yun, K.W. and M. Kim. 2010. Korean medicinal plants. Shinkwang Publishing Co., Seoul, Korea. pp. 502-503.