DOI QR코드

DOI QR Code

가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives

  • 도정윤 (군산대학교 산학협력단) ;
  • 국성오 (군산대학교 토목환경공학부) ;
  • 김두기 (군산대학교 토목환경공학부)
  • 투고 : 2017.08.07
  • 심사 : 2017.10.16
  • 발행 : 2017.11.01

초록

본 연구는 전산실험을 통해 중규모 건물에 설치한 수동형 TMD의 매개변수에 대한 가중 다목적 최적화 설계를 다루고 있다. MATLAB으로 수치 시뮬레이션 코드를 작성함으로써 지진하중에 대한 동적응답을 파악하였으며 중심합성계획법과 반응표면법으로 구성한 전산실험을 기반으로 하는 가중 다목적 최적화 기법을 적용하여 TMD의 최적 동조 매개변수를 찾고자 하였다. 본 연구에서는 10층 건물을 대상으로 El Centro를 벤치마크 지진으로 가진하여 반응모델을 생성하고, AHP를 이용하여 반응변수 사이의 상대적 중요도를 산출한 후 가중다목적최적화 설계를 실시하였다. 본 연구의 방법으로 최적화된 매개변수를 가진 TMD는 지진 응답을 효과적으로 저감하였다. El Centro 지진이 작용하는 경우 RSM 기반 가중 다목적 최적설계방법으로 최적화한 TMD의 진동수 응답과 최상층 평균제곱변위는 비제진시보다 각각 31.6%와 82.3% 향상되었고, 모든 적용 지진에서 기존 설계법보다 동등 또는 이상의 성능을 가진 것으로 확인되었다.

In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

키워드

참고문헌

  1. Bekdas, G. and Nigdeli, S. M. (2011), Estimating optimum parameters of tuned mass dampers using harmony search, Engineering Structures, 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
  2. Bekdas, G. and Nigdeli, S. M. (2013), Optimization of tuned mass damper with harmony search, Metaheuristic Applications in Structures and Infrastructures, Elsevier, 345-371.
  3. Den Hartog, J. P. (1947), Mechanical vibrations, McGraw-Hill, New York, 79-121.
  4. Derringer, G. and Suich, R. (1980), Simultaneous Optimization of Several Response Variables, Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968
  5. Farshidianfar, A. and Soheili, S. (2013), Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures inclding soil-structure interaction, Soil Dynamics and Earthquake Engineering, 51, 14-22. https://doi.org/10.1016/j.soildyn.2013.04.002
  6. Khan, A., Do, J., and Kim, D. (2016a), Experimental Optimization of High-Strength Self-Compacting Concrete Based on D-Optimal Design, Journal of Construction Engineering and Management, 143(4), 04016108.
  7. Khan, A., Do, J., Kim, D., and Chang, S. (2016b). Modal Parameterbased Seismic Vibration Control of Structure with Combination of TMD and Viscoelastic Damper, Proceedings of 2016 Spring Korea Institute for Strutural Maintenance and Inspection, 20(1), 289-290.
  8. Lee, C. L., Chen, Y. T., Chung, L. L., and Wang, Y. P. (2006), Optimal design theories and applications of tuned mass dampers, Engineering Structures, 28(1), 43-53. https://doi.org/10.1016/j.engstruct.2005.06.023
  9. Leung, A. Y. T. and Zhang, H. (2009), Particle swarm optimization of tuned mass dampers, Engineering Structures, 31(3), 715-728. https://doi.org/10.1016/j.engstruct.2008.11.017
  10. Leung, A. Y. T., Zhang, H., Cheng, C. C., and Lee, Y. Y. (2008), Particle swarm optimization of TMD by non-stationary base excitation during earthquake, Earthquake Engineering and Structural Dynamics, 37(9), 1223-1246. https://doi.org/10.1002/eqe.811
  11. Rahman, M. S., Islam, M. S., Do, J., and Kim, D. (2017) Response Surface Methodology Based Multi-Objective Optimization of Tuned Mass Damper for Jacket Supported Offshore Wind Turbine, Structural Engineering and Mechanics, 63(3), 303-315. https://doi.org/10.12989/SEM.2017.63.3.303
  12. Sadek, F., Mohraz, B., Taylor, A. W., and Chung, R. M. (1997), A method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering and Structural Dynamics, 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  13. Warburton, G. B. (1982), Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering and Structural Dynamics. 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304