DOI QR코드

DOI QR Code

콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction

  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 권혁진 (경기대학교 일반대학원 건축공학과) ;
  • 박종범 (경기대학교 일반대학원 건축공학과)
  • 투고 : 2017.07.31
  • 심사 : 2017.10.30
  • 발행 : 2017.11.01

초록

본 연구에서는 콘크리트 시공줄눈 면의 전단마찰 내력을 합리적으로 평가하기 위하여 콘크리트 소성론의 상계치 이론에 기반한 수학적 모델을 제시하였다. 전단면에서 횡보강근의 전단전달에 대한 과대평가를 피하기 위하여 시공줄눈 면에서의 하중전달에 대한 스트럿-타이 모델에서 콘크리트 할렬 및 압괴의 한계상태로부터 전단마찰 내력의 상한값을 유도하였다. 제시된 모델은 시공줄눈 면에서 콘크리트 점착력과 마찰계수를 거친 면의 경우 각각 $0.27(f_{ck})^{0.65}$와 0.95를, 부드러운 면의 경우 각각 $0.11(f_{ck})^{0.65}$와 0.64로 결정하였는데, 여기서 $f_{ck}$는 콘크리트 압축강도이다. 직접전단에 대한 기존 문헌으로부터 수집한 146 실험데이터와의 비교로부터, 제시된 모델은 AASHTO 및 fib 2010 식에 비해 예측 값과 실험 값들의 비의 표준편차 및 변동계수에 대해 더 낮은 값을 보였다. 특히 전단마찰 내력 평가에서 기준식들의 상당한 과소평가 경향과 달리 제시된 모델은 실험결과와 잘 예측하였다.

This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.

키워드

참고문헌

  1. AASHTO (2014), AASHTO LRFD Bridge Design Specifications: Seventh Edition. American Association of State Highway and Transportation Official(AASHTO), Washington, DC, USA.
  2. ACI Committee 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), American Concrete Institute, Farmington Hills, Michigan, USA, 382.
  3. Ali, M. A. and White, R. N. (1999), Enhanced Contact Model for Shear Friction of Normal and High-Strength Concrete, ACI Structural Journal, 96(3), 348-360.
  4. Belarbi, A. and Hsu, T. T. C. (1995), Constitutive Laws of Softened Concrete in Biaxial Tension-Compression. ACI Structural Journal, 92(5), 562-573.
  5. Choi, O. C., Cho, S. S., Hong, G. S., Chung, I. Y., and Shin, Y. S. (1994), Interfacial Shear Transfer Characteristics of Concrete Joints, Journal of the Architectural Institute of Korea, 10(8), 89-96.
  6. Fib (2013). Model Code for Concrete Structures 2010, Special Activity Group 5. Lausanne, CH: federation internationale de beton.
  7. Frenay, J. (1985), Shear Transfer across a Single Crack in Reinforced Concrete under Sustained Loading, Stevin Laboratory, Department of Civil Engineering, Delft University of Technology, Report No. 5-85-5.
  8. Harries, K. A., Zeno, G., and Shahrooz, B. (2012), Toward an Improved Understanding of Shear Friction Behavior, ACI Structural Journal, 109(6), 835-844.
  9. Harries, K. A., Zeno, G., and Shahrooz, B. (2012), toward an Improved Understanding of Shear-Friction Behaviour, ACI Structural Journal, 109(6), 835-844.
  10. Hwang, Y. H. (2016), Evaluation of Concrete Shear Friction Strength Considering its Unit Weight, MSc Thesis, Department of Architectural Engineering, Kyonggi University, Korea.
  11. Hwang, Y. H. and Yang, K. H. (2016), Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint. Journal of Korea concrete Institute, 28(5), 555-562. https://doi.org/10.4334/JKCI.2016.28.5.555
  12. Kahn, L. F. and Mitchell, A. D. (2002), Shear Friction Tests with High-Strength Concrete, ACI Structural Journal, 99(1), 98-103.
  13. Kahn, L. F. and Mitchell, A. D. (2002), Shear Friction Tests with High-Strength Concrete, ACI Structural Journal, 99(1), 98-103.
  14. Kwon, S. J., Yang, K. H., Hwang, Y. H., and Ashour, A. F. (2017), Shear Friction Strength of Monolithic Concrete Interfaces, Magazine of Concrete Research, 69(5), 230-244. https://doi.org/10.1680/jmacr.16.00190
  15. Mattock, A. H. (1976), Shear Transfer under Monotonic Loading: A Cross an Interface between Concrete Cast at Different Times, University of Washington, Report No. SM76-3.
  16. Mattock, A. H. and Hawkins, N. M. (1972), Shear Transfer in Reinforced Concrete-Recent Research, PCI Journal, 71(2), 76-93.
  17. Mattock, A. H., Johal, L., and Chow, H. C. (1975), Shear Transfer in Reinforced Concrete with Moment or Tension Acting across the Shear Plane, PCI Journal, 20(4), 76-93. https://doi.org/10.15554/pcij.07011975.76.93
  18. Nielsen, M. P. and Hoang, L. C. (2011), Limit Analysis and Concrete Plasticity, Prentice-Hall, England.
  19. Pruijssers, A. and Liqui, L. G. (1985), Shear Transfer Across a Crack in Concrete Subjected to Repeated Loading. Stevin Laboratory, Department of Civil Engineering, Delft University of Technology, Report No. 5-85-12.
  20. Walraven, J. C. and Stroband, J. (1994), Shear Friction in High-Strength Concrete. ACI Structural Journal, 149(17), 311-330.