DOI QR코드

DOI QR Code

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module

집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향

  • Choi, Kyungwho (New Transportation Systems Research Center, Korea Railroad Research Institute) ;
  • Ahn, Dahoon (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Boo, Joon Hong (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 최경후 (한국철도기술연구원 신교통연구본부) ;
  • 안다훈 (한국철도기술연구원 고속철도연구본부) ;
  • 부준홍 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2017.09.26
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.

일반적으로 열전발전 소자를 사용하여 에너지 하베스팅을 하는 경우, 시스템의 작동환경에 의해 주어지는 온도구배를 활용하게 된다. 따라서 열전소자의 특성상 큰 온도구배를 기대하기 어려운 작동환경에서는 원하는 출력을 얻을 수 없으며, 작동 온도가 높을 때 얻어지게 되는 최적의 발전효율을 기대하기 힘들다. 자연환경에서 얻을 수 있는 태양에너지를 활용한 신재생 에너지의 활용은 그 동안 태양광발전이나 태양열발전에 국한되어 왔다. 태양광발전은 태양광의 일정 파장대만 사용하고 빛의 산란에 의해 발전효율이 낮아지는 단점이 있으며, 태양열발전은 일반적으로 대규모 설비를 갖춰야 하는 공간상의 제약이 있다. 본 연구에서는 태양열을 집광하여 열전소자에 조사함으로서 큰 온도구배를 형성하여 상용 열전소자의 출력을 향상시킬 수 있는 간단한 소형 발전시스템을 설계 및 제작하였다. 장시간 태양열 집중을 위해 태양 추적 장치를 설치하였으며, 열전소자 하부에 고온의 태양열이 전달되어 온도 편차가 줄어드는 현상을 막기 위해 액체 순환식 냉각기를 설치하여 큰 온도구배를 유지할 수 있도록 설계한 후, 일련의 실험으로 시험하여 그 유용성과 타당성을 검증하였다.

Keywords

References

  1. Jae Hyuk Shin, Seung Shin Yi, Sang Min Kim, Joon Hong Boo, "An experiment study on he performance of a concentrating phtovoltaic cell as a function of temperature", Proceedings of KSES 2013 spring conference, 32, pp. 96-101, 2012.
  2. Eui-Guk Jung, Jong-Kyu Kim, Yong-Heack Kang, Joon-Hong Boo, "Heat Transfer Analysis of the Solar Thermal Storage System with Heat Pipe Array", Proceedings of KSES 2010 spring conference, 1, pp. 219-226, 2010.
  3. Jung Ryun Lee, Joon Hong Boo, "Design of a Solar Thermal Storage System Employing Heat Pipes and Molten Salts", Proceedings of KSES 2011 spring conference, 1, pp. 86-91, 2011.
  4. Min Kyu Park, Joon Hong Boo, "The Effect of Working Fluid Charge on the Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System", Proceedings of KSES 2011 spring conference, 31, pp. 68-73, 2011.
  5. Daniel Kraemer, Bed Poudel, Hsien-Ping Feng, J. Christopher Caylor, Bo Yu, Xiao Yan, Yi Ma, Xiaowei Wang, Dezhi Wang, Andrew Muto, Kenneth McEnaney, Matteo Chiesa, Zhifeng Ren, Gang Chen, "High-performance flat-panel solar thermoelectric generators with high thermal concentration", Nature Materials, 10, pp. 532-538, 2011. DOI: https://doi.org/10.1038/nmat3013
  6. Lauryn L. Baranowski, G. Jeffrey Snyder, Eric S. Toberer, "Concentrated solar thermoelectric generators", Energy and Environmental Science, 5, pp. 9055-9067, 2012. DOI: https://doi.org/10.1039/c2ee22248e
  7. M. L. Olsen, E. L. Warrenb, P. A. Parillaa, E. S. Toberera, b, C. E. Kennedya, G. J. Snyderc, S. A. Firdosyd, B. Nesmithd, A. Zakutayeva, A. Goodricha, C. S. Turchia, J. Nettera, M. H. Graya, P. F. Ndionea, R. Tirawata, L. L. Baranowskib, A. Graya, D. S. Ginleya, "A High-temperature, high-efficiency solar thermoelectric generator prototype", Energy Procedia, 49, pp. 1460-1469, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.03.155
  8. Dae-Ho Kim, Seungwoo Han, "Evaluation of effects on the performance of thermoelectric generators using solar energy", Proceedings of KSES 2013 spring conference, 33, pp. 41-46, 2013.
  9. Y. S. Cho, Y. H. Park, Y. S. Yang, "An Experimental Study of the Solar Thermoelectric Generation System," Solar Energy, Journal of KSES), vol. 18, no. 3, pp. 113-118, 1998.
  10. Min-Gyu Kang, Woo-Jin Seo, In-Sung Her, Young Moon Yu, Hee-Lack Choi, "Study on Heat Transfer Performance of Heat Spreader depending on the Filling Rate of Working Fluid", Journal of the Korean Institute of IIIuminating and Electrical Installation Engineer, vol. 31, no. 2, pp. 1-10, 2017. DOI: https://doi.org/10.5207/JIEIE.2017.31.2.001
  11. Hong-Koo Noh, Kyung Bin Lim, Man Heung Park, "Colling performance of a Notebook PC Mounted with heat Spreader", Transactions of the Korean Society of Mechanical Engineers-B, vol. 25, no. 6, pp. 766-775, 2001. https://doi.org/10.22634/KSME-B.2001.25.6.766

Cited by

  1. Performance Evaluation of Thermoelectric Energy Harvesting System on Operating Rolling Stock vol.9, pp.7, 2018, https://doi.org/10.3390/mi9070359