DOI QR코드

DOI QR Code

An Experimental Study on Debris Reduction System for Culvert

암거의 유송잡물 저감시설에 관한 실험 연구

  • Kim, Sung-Joong (River Experiment Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Joon-Gu (River Experiment Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jong-Tae (Natural Disaster Division, Gyeongsangbuk Provincial Government)
  • 김성중 (한국건설기술연구원 하천실험센터) ;
  • 강준구 (한국건설기술연구원 하천실험센터) ;
  • 김종태 (경북도청 자연재난과)
  • Received : 2017.08.29
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

The purpose of this study was to verify experimentally debris reduction facilities for culverts installed in small rivers. A culvert is defined as a structure laid under a road or a railroad that passes through an inner urban area or downtown area to make an artificial canal. Culverts are generally categorized into road culverts or waterway culverts, among which the latter are artificial structures designed to discharge running water into a river. At the time of floods, the structural safety of waterway culverts can be undermined by the accumulation of debris, such as soil, boughs and weeds, and they may be at risk of overflowing due to blockages. Debris reduction facilities are necessary to prevent such damage. In this study, the effects of the three existing types of debris reduction facilities were examined through hydraulic experiments. The results of the experiments showed that vertical separation to divert debris reduced the accumulation rate by 27.65 to 31.39 percent. The two types of screen designed to block and divert debris, respectively, were found to have excellent debris blocking abilities. However, when the effects of the rising water level are considered simultaneously, the screen to divert debris was found to show superior effects. The screen to block debris can be considered to have excellent debris blocking ability, but requires the continuous collection of the debris, due to the high risk of rising water levels caused by its accumulation.

본 연구는 소하천에 설치된 암거를 대상으로 유송잡물 집적 빙지를 위한 저감시설에 대한 실험검증 연구이다. 암거는 도심지 내부나 도심을 통과하는 도로와 철도 아래에 인공수로를 만들기 위해 매설하는 구조물로 정의되며, 일반적으로 도로암거와 수로암거로 구분된다. 이중 수로암거는 유수를 하천으로 배출하기 위해 인공적으로 조성되는 구조물로 홍수시 토사 또는 나뭇가지나 잡풀과 같은 유송잡물의 집적으로 인해 구조물의 안정성을 저해하고 단면폐색으로 인한 월류위험성에 노출되어 있다. 이러한 유송잡물로 인한 피해를 예방하기 위해서는 유송잡물 저감시설은 반드시 필요하다. 본 연구에서는 수리실험을 통해 기존 재시된 3가지 유송잡물 저감시설의 효과를 검토하였다. 실험결과 유송잡물을 우회시키는 방식인 수직분리대를 설치할 경우 설치전에 비해 집적률은 27.65% ~ 31.39% 감소하는 효과가 있었으며, 유송잡물 차단이 목적인 스크린과 우회스크린은 유송잡물의 종류에 관계없이 높은 차단효과를 보였다. 그러나 수위상승에 대한 영향을 복합적으로 검토하였을때 우회스크린방식이 우수한 효과를 보이는 것으로 나타났다. 이러한 스크린빙식은 차단 효과는 좋으나 집적으로 인한 수위상승 위험성이 높아 지속적인 유송잡물의 회수를 고려해야 할 것으로 판단된다.

Keywords

References

  1. S. J. Jeon, Plan and Design of Stream, Engineer Book, 2011.
  2. National Emergency Management, "Design Criteria of Small Stream", 2012.
  3. Ministry of Land.Transport and Maritime Affairs, "Plan and Design of Distributing Installation", 2012.
  4. J. H. Ham, K. S. Ryu, "Hydraulic Computation and Stress Analysis of Box Culvert", Journal of the Koreans Society of Agricultural Engineers, vol. 14, no. 1, pp. 2557-2569, 1972.
  5. D. H. Yoo, H. S. Uhm, "Explicit Analysis of Flows in Box Culvert", Journal of Korea Water Resources Association, vol. 36, no. 1, pp. 481-494, 2003. DOI: https://doi.org/10.3741/JKWRA.2003.36.3.481
  6. H. J. Koo, K. S. Jun, "Development of a culvert design model", Proceedings of The Korea Water Resources Association 2008, pp. 645-649, 2008.
  7. S. J. Kim, D. J. Jung, J. G. Kang, H. K. Yeo, J. T. Kim, "A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge", Journal of Korea Academia-Industrial cooperation Society, vol. 17, no. 3, pp. 31-41, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.3.31
  8. J. Y. Jang, "A Simplified Design Method of Culvert Outlet Facilities for Detention Pond", M.S. dissertation, University of Kumoh National Institute of Technology, Gumi, Korea, 2010.
  9. P. A. Johnson, R. D. Hey , M. W. Horst, A. J. Hess, "Aggradation at Bridges", Journal of Hydraulic Engineering, vol. 127, no. 2, pp. 154-157, 2001. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2001)127:2(154)
  10. L. Schmocker, W. H. Hager, "Probability of Drift Blockage at Bridge Decks", Journal of Hydraulic Engineering, vol. 137, no. 4, pp. 470-479, 2011. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000319
  11. L. Schmocker, W. H. Hager, "Scale Modeling of Wooden Debris Accumulation at a Debris Rack", Journal of Hydraulic Engineering, vol. 139, no. 8, pp. 827-836, 2013. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0 000714
  12. D. A. Chin, "Hydraulic Analysis and Design of Pipe Culverts: USGS versus FHWA", Journal of Hydraulic Engineering, vol. 139, no. 8, pp. 886-893, 2013. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000748
  13. B. Dasika, "New approach to design of culverts", Journal of Irrigation and Drainage Engineering, vol. 121, no. 3, pp. 261-264, 1995. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1995) 121:3(261)
  14. W. H. Hager, "Generalized culvert design diagram", Journal of Irrigation and Drainage Engineering, vol. 124, no. 5, pp. 271-274, 1998. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1998) 124:5(271)
  15. E. A. Meselhe, K. Hebert, "Laboratory Measurements of Flow through Culverts", Journal of Hydraulic Engineering, vol. 133, no. 8, pp. 973-976, 2007. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2007) 133:8(973)
  16. A. Guven, M. Hassan, S. Sabir, "Experimental investigation on discharge coefficient for a combined broad crested weir-box culvert structure", Journal of Hydrology, vol. 500, pp. 97-103, 2013. DOI: https://doi.org/10.1016/j.jhydrol.2013.07.021
  17. Federal Highway Administration FHWA, "Debris Control Structures", Hydraulic Engineering Circular no. 9, 2005.
  18. Federal Highway Administration FHWA, "Hydraulic Design of Highway Culverts", Hydraulic Design Series Number 5, 2012.
  19. Ministry of Land Infrastructure and Transport, "Standard of Culvert", 2008.