DOI QR코드

DOI QR Code

Improvement of Measurement Accuracy by Correcting Systematic Error Associated with the X-ray Diffractometer

X-선 회절 장비의 기계적 오차 수정을 통한 분석 정확도 향상

  • Choi, Dooho (Division of Advanced Materials Engineering, Dong-Eui University)
  • 최두호 (동의대학교 신소재공학부)
  • Received : 2017.08.14
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

X-ray diffractometers are used to characterize material properties, such as the phase, texture, lattice constant and residual stress, based on the diffracted beams obtained from specimens. Quantitative analyses using X-rays are typically conducted by measuring the peak positions of the diffracted beams. However, the long-term use of the diffractomer, like any other machine, results in errors associated with the mechanical parts, which can deteriorate the accuracy of the quantitative analyses. In this study, the process of correcting systematic errors in the $2{\theta}$ range of $30{\sim}90^{\circ}$ is discussed, for which strain-free Si powders from NIST were used as the standard specimens. For the evaluation of the impact of such error correction, we conducted a quantitative analysis of the true lattice constant for tungsten thin films.

X-선 회절기(X-ray diffractometer)는 시편에서 회절되는 회절빔을 이용하여 재료의 상 (phase), 집합조직 (texture), 격자상수 (lattice constant), 잔류응력 (residual stress) 등 다양한 재료물성을 분석하는 데 광범위하게 사용되는 장치이다. X-선을 이용한 정량적인 분석은 회절빔의 피크 위치를 바탕으로 수행되는 데, 장시간 X-선 회절기를 사용하게 되면 필연적으로 장치 부품에 미세 변형이 발생하게 되고, 이러한 기계적인 오차가 발생하면 정량적인 분석의 정확도가 떨어지게 된다. 본 연구에서는 미국 표준기술연구소 (National Institute of Standards and Technology, NIST)에서 제공된 잔류응력이 없는 Si 파우더를 이용하여 $2{\theta}$를 기준으로 약 30~90도 사이 구간에 대해 X-선 회절 실험을 수행하였고, NIST에서 제공된 회절빔의 피크 위치와의 비교를 통하여 X-선 회절기의 계통오차를 파악하였으며, 이러한 오차 교정이 진격자상수 (true lattice constant) 측정 등 정량적인 분석에 미치는 영향을 확인하기 위하여 잔류응력이 존재하는 180 nm 두께의 텅스텐 박막에 대한 X-선 회절 분석을 수행하였다.

Keywords

References

  1. B. E. Warren, "X-ray Diffraction," Dover 1990.
  2. B. D. Cullity and S. R. Stock, "Elements of X-ray Diffraction (3rd Edition)," Pearson 2001.
  3. C. Suryanarayana and M. G. Norton, "X-ray Diffraction: A Practical Approach," Springer, 1998. DOI: https://doi.org/10.1007/978-1-4899-0148-4
  4. C.-H. Ma, J.-H. Huang and H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction," Thin Solid Films, vol. 418, pp. 73-78, 2002. DOI: https://doi.org/10.1016/S0040-6090(02)00680-6
  5. X. Zheng, J. Li and Y. Zhou, "X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition," Acta Mater, vol. 52, pp. 3313-3322, 2004. DOI: https://doi.org/10.1016/j.actamat.2004.02.047
  6. M. Muntwiler, W. Auwarter, F. Baumberger, M. Hoesch, T. Greber and J. Osterwalder, "Determining adsorbate structures from substrate emission X-ray photoelectron diffraction," Surf. Sci. vol. 472, pp. 125-132, 2001. DOI: https://doi.org/10.1016/S0039-6028(00)00928-6
  7. I. C. Noyan and J. B. Cohen, "An X-ray diffraction study of the residual stress-strain distributions in shot-peened two-phase brass," Mater. Sci. & Eng. vol. 75, pp. 179-193, 1985. DOI: https://doi.org/10.1016/0025-5416(85)90188-0
  8. A. Bensely, S. Venkatesh, D. M. Lal, G. Nagarajan, A. Rajadurai and K. Junil, "Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel," Mater. Sci. & Eng. A, vol. 479, pp. 229-235, 2008. DOI: https://doi.org/10.1016/j.msea.2007.07.035
  9. G. Cornella, S.-H. Lee, W. D. Nix and J. C. Bravman, An analkysis technique for extraction of thin film stresses from x-ray data, Appl. Phys. Lett, vol. 71, pp. 2949-2951, 1997. DOI: https://doi.org/10.1063/1.120225
  10. P.-O. Renault, K. F. Badawi, L. Bimbault, Ph. Goudeau, E. Elkaim and J. P. Lauriat, "Poisson's ratio measurement in tungsten thin films combining an x-ray diffractometer with in situ tensile tester," Appl. Phys. Lett., vol. 73, pp. 1952-1954, 1998. DOI: https://doi.org/10.1063/1.122332
  11. Y.-W. Zhao, Y.-J. Wang, X.-Y. Jin, P. Jia, L. Chen, Y. Zhou, G.-M. Song, J.-P. Li, Z.-H. Feng, "Microstructure and properties of ZrC-W composite fabricated by reactive infiltration of $Zr_2Cu$ into WC/W preform," Mater. Chem. & Phys., vol. 153, pp. 17-22, 2015. DOI: https://doi.org/10.1016/j.matchemphys.2014.12.029