References
- T. Saga, "Advances in crystalline silicon solar cell technology for industrial mass production," NPG Asia Mater., 2 [3] 96-102 (2010). https://doi.org/10.1038/asiamat.2010.82
- M. C. Scharber, N. S. Sariciftci, "Efficiency of bulk-heterojunction organic solar cells," Prog. Polym. Sci., 38 [12] 1929-40 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.001
- G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, "Colloidal quantum dot solar cells," Chem. Rev., 115 [23] 12732-63 (2015). https://doi.org/10.1021/acs.chemrev.5b00063
- H. J. Snaith, "Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells," J. Phys. Chem. Lett., 4 [21] 3623-30 (2013). https://doi.org/10.1021/jz4020162
- J. Gong, J. Liang, K. Sumathy, "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renew. Sustain. Energy Rev., 16 [8] 5848-60 (2012). https://doi.org/10.1016/j.rser.2012.04.044
- M. A. Green, A. Ho-Baillie, H. J. Snaith, "The emergence of perovskite solar cells," Nature Photon., 8 506-14 (2014). https://doi.org/10.1038/nphoton.2014.134
- F. C. Krebs, S. A. Gevorgyan, J. Alstrup, "A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies," J. Mater. Chem., 19 5442-51 (2009). https://doi.org/10.1039/b823001c
- J. Alstrup, M. Jorgensen, A. J. Medford, F. C. Krebs, "Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating," ACS Appl. Mater. Interfaces, 2 [10] 2819-27 (2010). https://doi.org/10.1021/am100505e
- M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, "A molecularly engineered hole-transporting material for efficient perovskite solar cells," Nat. Energy., 1 15017 (2016). https://doi.org/10.1038/nenergy.2015.17
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, L. Han, "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers," Science, 350 [6263] 944-8 (2015). https://doi.org/10.1126/science.aad1015
- J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency," Nat. Commun., 4 1446 (2013). https://doi.org/10.1038/ncomms2411
- R. Po, C. Carbonera, A. Bernardi, N. Camaioni, "The role of buffer layers in polymer solar cells," Energy Environ. Sci., 4 285-310 (2011). https://doi.org/10.1039/C0EE00273A
- J.-H. Choi, H.-J. Choi, J.-H. Shin, H.-P. Kim, J. Jang, H. Lee, "Enhancement of organic solar cell efficiency by patterning the PEDOT:PSS hole transport layer using nanoimprint lithography," Org. Electron., 14 [12] 3180-5 (2013). https://doi.org/10.1016/j.orgel.2013.09.020
- Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, "Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer," Adv. Mater., 23 [19] 2226-30 (2011). https://doi.org/10.1002/adma.201100038
- H. Pan, L. Zuo, W. Fu, C. Fan, B. Andreasen, X. Jiang, K. Norrman, F. C. Krebs, H. Chen, "MoO3-Au composite interfacial layer for high efficiency and air-stable organic solar cells," Org. Electron., 14 [3] 797-803 (2013). https://doi.org/10.1016/j.orgel.2012.12.020
- S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K.-Y. Jen, "Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer," Appl. Phys. Lett., 92 [25] 253301 (2008). https://doi.org/10.1063/1.2945281
- C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, "Low work function metal modified ito as cathode for inverted polymer solar cells," Sol. Energy Mater. Sol. Cells, 94 [10] 1618-21 (2010). https://doi.org/10.1016/j.solmat.2010.04.082
- K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, "Degradation of organic solar cells due to air exposure," Sol. Energy Mater. Sol. Cells, 90 [20] 3520-30 (2006). https://doi.org/10.1016/j.solmat.2006.06.041
- M. Jorgensen, K. Norrman, F. C. Krebs, "Stability/degradation of polymer solar cells," Sol. Energy Mater. Sol. Cells, 92 [7] 686-714 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
- M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, "Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate) in polymer light-emitting diodes," Appl. Phys. Lett., 77 2255-7 (2000). https://doi.org/10.1063/1.1315344
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, 306 [5696] 666-9 (2004). https://doi.org/10.1126/science.1102896
- F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photon., 4 611-22 (2010). https://doi.org/10.1038/nphoton.2010.186
-
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, "Ultrasensitive photodetectors based on monolayer
$MoS_2$ ," Nat. Nanotech., 8 497-501 (2013). https://doi.org/10.1038/nnano.2013.100 -
J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M. A. Alam, S. Kim, "Two-dimensional layered
$MoS_2$ biosensors enable highly sensitive detection of biomolecules," Sci. Rep., 4 7352 (2014). - Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotech., 7 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
- K. C. Kwon, K. S. Choi, S. Y. Kim, "Increased work function in few-layer graphene sheets via metal chloride doping," Adv. Funct. Mater., 22 [22] 4724-31 (2012). https://doi.org/10.1002/adfm.201200997
- D. Yang, L. Zhou, W. Yu, J. Zhang, C. Li, "Work-function-tunable chlorinated graphene oxide as an anode interface layer in high-efficiency polymer solar cells," Adv. Energy Mater., 4 [15] 1400591 (2014). https://doi.org/10.1002/aenm.201400591
-
J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na, H.-G. Jeong, J. Kim, S. Lee, S.-S. Kim, H. Y. Koo, T.-W. Kim, D.-Y. Kim, "Efficient work-function engineering of solution-processed
$MoS_2$ thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells," J. Mater. Chem. C, 1 3777 (2013). https://doi.org/10.1039/c3tc30504j - E. O. Ortiz-Quiles, C. R. Cabrera, "Exfoliated molybdenum disulfide for dye sensitized solar cells," FlatChem, 2 1-7 (2017). https://doi.org/10.1016/j.flatc.2017.01.002
- S. Lin, Y. Chui, Y. Li, S. P. Lau, "Liquid-phase exfoliation of black phosphorus and its applications," FlatChem, 2 15-37 (2017). https://doi.org/10.1016/j.flatc.2017.03.001
- S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, "Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells," ACS Nano, 4 [6] 3169-74 (2010). https://doi.org/10.1021/nn100551j
- C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, "Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films," Adv. Funct. Mater., 19 [16] 2577-83 (2009). https://doi.org/10.1002/adfm.200900166
- G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, "Insulator to semimetal transition in graphene oxide," J. Phys. Chem. C, 113 [35] 15768-71 (2009). https://doi.org/10.1021/jp9051402
- J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, "Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells," Adv. Mater., 23 [42] 4923-8 (2011). https://doi.org/10.1002/adma.201102207
- X. Liu, H. Kim, L. J. Guo, "Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells," Org. Electron., 14 [12] 591-8 (2013). https://doi.org/10.1016/j.orgel.2012.11.020
- E.-S. Choi, Y.-J. Jeon, S.-S. Kim, T.-W. Kim, Y.-J. Noh, S.-N. Kwon, S.-I. Na, "Metal chloride-treated graphene oxide to produce high-performance polymer solar cells," Appl. Phys. Lett., 107 [2] 023301 (2015). https://doi.org/10.1063/1.4926799
- J. Kim, V. C. Tung, J. Huang, "Water processable graphene oxide:Single walled carbon nanotube composite as anode modifier for polymer solar cells," Adv. Energy Mater., 1 [6] 1052-7 (2011). https://doi.org/10.1002/aenm.201100466
- C. Y. Lee, Q. V. Le, C. Kim, S. Y. Kim, "Use of silane-functionalized graphene oxide in organic photovoltaic cells and organic light-emitting diodes, Phys. Chem. Chem. Phys., 17 9369-74 (2015). https://doi.org/10.1039/C5CP00507H
- L. Chen, D. Du, K. Sun, J. Hou, J. Ouyang, "Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: Graphene oxide nanocomposites as hole-collection material," ACS Appl. Mater. Interfaces, 6 [24] 22334-42 (2014). https://doi.org/10.1021/am506326y
- D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park, A. J. Heeger, "Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells," Angew. Chem. Int. Ed., 52 [10] 2874-80 (2013). https://doi.org/10.1002/anie.201209999
- J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, "Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells," Adv. Mater., 24 [17] 2228-33 (2012). https://doi.org/10.1002/adma.201104945
- S. R. Gollu, R. Sharma, G. Srinivas, S. Kundu, D. Gupta, "Incorporation of silver and gold nanostructures for performance improvement in P3HT:PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer," Org. Electron., 29 79-87 (2016). https://doi.org/10.1016/j.orgel.2015.11.015
- I. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, M. C. Hersam, "Graphene oxide interlayers for robust, high-efficiency organic photovoltaics," J. Phys. Chem. Lett., 2 [24] 3006-12 (2011). https://doi.org/10.1021/jz201493d
- Y. Gao, H.-L. Yip, S. K. Hau, K. M. O'Malley, N. C. Cho, H. Chen, A. K.-Y. Jen, "Anode modification of inverted polymer solar cells using graphene oxide," Appl. Phys. Lett., 97 [20] 203306 (2010). https://doi.org/10.1063/1.3507388
- R. Wu, Y. Wang, L. Chen, L. Huang, Y. Chen, "Control of the oxidation level of graphene oxide for high efficiency polymer solar cells," RSC Adv., 5 [61] 49182-7 (2015). https://doi.org/10.1039/C5RA02099A
- J. Liu, Y. Xue, L. Dai, "Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells," J. Phys. Chem. Lett., 3 [14] 1928-33 (2012). https://doi.org/10.1021/jz300723h
- C. Li, X. Yang, Y. Zhao, P. Zhang, Y. Tu, Y. Li, "Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells," Org. Electron., 15 [11] 2868-75 (2014). https://doi.org/10.1016/j.orgel.2014.08.007
- J. C. Yu, J. I. Jang, B. R. Lee, G.-W. Lee, J. T. Han, M. H. Song, "Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer," ACS Appl. Mater. Interfaces, 6 [3] 2067-73 (2014). https://doi.org/10.1021/am4051487
- Y.-H. Chao, J.-S. Wu, C.-E. Wu, J.-F. Jheng, C.-L. Wang, C.-S. Hsu, "Solution-processed (graphene oxide)-(transition metal oxide) composite anodic buffer layers toward high-performance and durable inverted polymer solar cells," Adv. Energy Mater., 3 [10] 1279-85 (2013). https://doi.org/10.1002/aenm.201300430
- Y.-Y. Yu, B. H. Kang, Y. D. Lee, S. B. Lee, B.-K. Ju, "Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells," Appl. Surf. Sci., 287 91-6 (2013). https://doi.org/10.1016/j.apsusc.2013.09.078
- H. P. Kim, A. R. b. Mohd Yusoff, J. Jang, "Organic solar cells using a reduced graphene oxide anode buffer layer," Sol. Energy Mater. Sol. Cells, 110 87-93 (2013). https://doi.org/10.1016/j.solmat.2012.12.001
- S.-H. Kim, C.-H. Lee, J.-M. Yun, Y.-J. Noh, S.-S. Kim, S. Lee, S. M. Jo, H.-I. Joh, S.-I. Na, "Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells," Nanoscale, 6 7183-7 (2014). https://doi.org/10.1039/C4NR01038H
- T.-W. Kang, Y.-J. Noh, S.-S. Kim, H.-I. Joh, S.-I. Na, "Efficient inverted-structure polymer solar cells with reduced graphene oxide for anode modification," J. Ind. Eng. Chem., 24 206-10 (2015). https://doi.org/10.1016/j.jiec.2014.09.030
- Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, "Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process," Appl. Surf. Sci., 296 140-6 (2014). https://doi.org/10.1016/j.apsusc.2014.01.061
- N. T. Ho, V. Senthilkumar, H.-S. Cho, S. H. Nho, S. Cho, M. C. Jung, Y. B. Qi, Y. S. Kim, "Reliability improvement of bulk-heterojunction organic solar cell by using reduced graphene oxide as hole-transport layer," Phys. Status Solidi A-Appl. Mat., 211 [8] 1873-6 (2014). https://doi.org/10.1002/pssa.201330611
- Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, "High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer," Sol. Energy Mater. Sol. Cells, 105 96-102 (2012). https://doi.org/10.1016/j.solmat.2012.05.024
- G. Kakavelakis, D. Konios, E. Stratakis, E. Kymakis, "Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer," Chem. Mater., 26 [20] 5988-93 (2014). https://doi.org/10.1021/cm502826f
- S. Qu, M. Li, L. Xie, X. Huang, J. Yang, N. Wang, S. Yang, "Noncovalent functionalization of graphene attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and application as electron extraction layer of polymer solar cells," ACS Nano, 7 [5] 4070-81 (2013). https://doi.org/10.1021/nn4001963
- D. Konios, G. Kakavelakis, C. Petridis, K. Savva, E. Stratakis, E. Kymakis, "Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers," J. Mater. Chem. A, 4 1612-23 (2016). https://doi.org/10.1039/C5TA09712F
- C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, L.-J. Li, "Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells," ACS Nano, 6 [6] 5031-9 (2012). https://doi.org/10.1021/nn301721q
- Y. Shi, H. Li, L.-J. Li, "Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques," Chem. Soc. Rev., 44 2744-56 (2015). https://doi.org/10.1039/C4CS00256C
- H. Zhang, "Ultrathin two-dimensional nanomaterials," ACS Nano, 9 [10] 9451-69 (2015). https://doi.org/10.1021/acsnano.5b05040
- D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, "Enhanced catalytic activity in strained chemically exfoliated WS2nanosheetsforhydrogenevoluti on," Nat. Mater., 12 850-5 (2013). https://doi.org/10.1038/nmat3700
- Z. Liu, S. P. Lau, F. Yan, "Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing," Chem. Soc. Rev., 44 5638-79 (2015). https://doi.org/10.1039/C4CS00455H
- M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, A. Salehi-Khojin, "Robust carbon dioxide reduction on molybdenum disulphide edges," Nat. Commun., 5 4470 (2014). https://doi.org/10.1038/ncomms5470
- M. Marcia, A. Hirsch, F. Hauke, "Perylene-based non-covalent functionalization of 2D materials," FlatChem, 1 89-103 (2017). https://doi.org/10.1016/j.flatc.2017.01.001
- X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S.-T. Lee, H. Zhang, B. Sun, "A solution-processed hole extraction layer made from ultrathin MoS2nanosheetsforefficientor ganicsolarcells," Adv. Energy Mater., 3 [10] 1262-8 (2013). https://doi.org/10.1002/aenm201300549
-
Q. V. Le, T. P. Nguyen, H. W. Jang, S. Y. Kim, "The use of UV/Ozone-treated
$MoS_2$ nano sheets for extended airs tability in organic photovoltaic cells," Phys. Chem. Chem. Phys., 16 13123-8 (2014). https://doi.org/10.1039/C4CP01598C -
J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, D. Y. Kim, "Exfoliated and partially oxidized
$MoS_2$ nanosheets by one-pot reaction for efficient and stable organic solar cells", Small, 10 [12] 2319-24 (2014). https://doi.org/10.1002/smll.201303648 -
W. Liu, X. Yang, Y. Zhang, M. Xu, H. Chen, "Ultra-stable two-dimensional
$MoS_2$ solution for highly efficient organic solar cells," RSC Adv., 4 32744-8 (2014). https://doi.org/10.1039/C4RA04116J - X. Yang, W. Fu, W. Liu, J. Hong, Y. Cai, C. Jin, M. Xu, H. Wang, D. Yang, H. Chen, "Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells," J. Mater. Chem. A, 2 7727-33 (2014). https://doi.org/10.1039/C4TA01336K
- K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J.-M. Jeon, J. Y. Ham, J.-L. Lee, H. W. Jang, S. Y. Kim, "Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices," ACS Nano, 9 [4] 4146-55 (2015). https://doi.org/10.1021/acsnano.5b01504
- Q. Van Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, S. Y. Kim, "Bottom-up synthesis of MeSx nanodots for optoelectronic device applications," Adv. Opt. Mater., 4 [11] 1796-804 (2016). https://doi.org/10.1002/adom.201600333
- W. Xing, Y. Chen, X. Wang, L. Lv, X. Ouyang, Z. Ge, H. Huang, "MoS2 quantum dots with a tunable work function for high-performance organic solarcells," ACS Appl. Mater. Interfaces, 8 [40] 26916-23 (2016). https://doi.org/10.1021/acsami.6b06081
- Q. V. Le, T. P. Nguyen, S. Y. Kim, "UV/ozone-treated WS2 hole-extraction layer in organic photovoltaic cells," Phys. Status Solidi RRL, 8 [5] 390-4 (2014). https://doi.org/10.1002/pssr.201409165
- Q. V. Le, T. P. Nguyen, K. S. Choi, Y.-H. Cho, Y. J. Hong, S. Y. Kim, "Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cells," Phys. Chem. Chem. Phys., 16 25468-72 (2014). https://doi.org/10.1039/C4CP04412F
- X. Gu, W. Cui, T. Song, C. Liu, X. Shi, S. Wang, B. Sun, "Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells," ChemSusChem, 7 [2] 416-20 (2014). https://doi.org/10.1002/cssc.201300615
- Z. Yuan, Z. Wu, S. Bai, W. Cui, J. Liu, T. Song, B. Sun, "Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics," Org. Electron., 26 327-33 (2015). https://doi.org/10.1016/j.orgel.2015.07.005
- S. Lin, S. Liu, Z. Yang, Y. Li, T. W. Ng, Z. Xu, Q. Bao, J. Hao, C.-S. Lee, C. Surya, F. Yan, S. P. Lau, "Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics," Adv. Funct. Mater., 26 [6] 864-71 (2016). https://doi.org/10.1002/adfm.201503273
- Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun, "Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor," Nanoscale, 6 10505-10 (2014). https://doi.org/10.1039/C4NR03181D
- J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, S.-I. Na, "Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer," Nano Energy, 12 96-104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
- A. L. Palma, L. Cina, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, "Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells," Nano Energy, 22 349-60 (2016). https://doi.org/10.1016/j.nanoen.2016.02.027
- Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, H. Lin, "Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells," J. Mater. Chem. A, 3 15996-16004 (2015). https://doi.org/10.1039/C5TA02710A
- D.-Y. Lee, S.-I. Na, S.-S. Kim, "Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells," Nanoscale, 8 1513-22 (2016). https://doi.org/10.1039/C5NR05271H
-
D. Li, J. Cui, H. Li, D. Huang, M. Wang, Y. Shen, "Graphene oxide modified hole transport layer for
$CH_3NH_3PbI_3$ planar heterojunction solar cells," Sol. Energy, 131 176-82 (2016). https://doi.org/10.1016/j.solener.2016.02.049 - A. Agresti, S. Pescetelli, L. Cina, D. Konios, G. Kakavelakis, E. Kymakis, A. D. Carlo, "Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer," Adv. Funct. Mater., 26 [16] 2686-94 (2016). https://doi.org/10.1002/adfm.201504949
-
A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha, L. Cina, V. Pellegrini, A. D. Carlo, F. Bonaccorso, "Few-layer
$MoS_2$ flakes as active bufferlayer for stable perovskite solar cells," Adv. Energy Mater., 6 [16] 1600920 (2016). https://doi.org/10.1002/aenm.201600920 - Y. G. Kim, K. C. Kwon, Q. V. Le, K. Hong, H. W. Jang, S. Y. Kim, "Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells," J. Power Sources, 319 1-8 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.032
- J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Lau, "Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells," J. Mater. Chem. A, 3 11750-5 (2015). https://doi.org/10.1039/C5TA01200G
- M. A. Mahmud, N. K. Elunalai, M. B. Upama, D. Wang, K. H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, "Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells," Sol. Energy Mater. Sol. Cells, 159 251-64 (2017). https://doi.org/10.1016/j.solmat.2016.09.014
- P. Huang, Z. Wang, Y. Liu, K. Zhang, L. Yuan, Yi. Zhou, B. Song, Y. Li, "Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells," ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.7b06403 (2017).