DOI QR코드

DOI QR Code

The influence of the radius of curvature on water desalination across the nanoporous penta-graphene

  • Received : 2016.12.07
  • Accepted : 2017.06.19
  • Published : 2017.11.25

Abstract

In the present study, the water desalination across the penta-graphene has been explored by using molecular dynamics simulation. The penta-graphene, a new carbon allotrope, introduced theoretically in 2015. It was shown that this carbon nanostructure is slightly stiffer against buckling in comparison with the graphene nanoribbons. The effect of radius of curvature (ROC) of the membrane, pore size, and applied pressure, on water flow rate, and salt rejection is investigated. It is shown that salt rejection, and the shape of the oxygen density distribution inside the pore can be influenced by the ROC of membrane. Finally, it is shown that the ROC, and pore size of 2D membranes, play an important role in the salt rejection.

Keywords

References

  1. Allen, M.P. and Tildesley, D.J. (1986), Computer Simulation of Liquids, Oxford University Press, New York.
  2. Azamat, J., Khataee, A. and Joo, S.W. (2015), "Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure", Chem. Eng. Sci., 127, 285-292. https://doi.org/10.1016/j.ces.2015.01.048
  3. Azamat, J., Sattary, B.S., Khataee, A. and Joo, S.W. (2015), "Removal of a hazardous heavy metal from aqueous solution usingfunctionalized graphene and boron nitride nanosheets: Insights fromsimulations", J. Molec. Graph. Model., 61, 13-20. https://doi.org/10.1016/j.jmgm.2015.06.012
  4. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987), "The missing term in effective pair potentials", J. Phys. Chem., 91, 6269-6271. https://doi.org/10.1021/j100308a038
  5. Chen, Q. and Yang, X. (2015), "Pyridinic nitrogen doped nanoporous graphene as desalination membrane: Molecular simulation study", J. Membr. Sci., 496, 108-117. https://doi.org/10.1016/j.memsci.2015.08.052
  6. Chien, S.K., Yang, Y.T. and Chen, C.K. (2011), "Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations", Appl. Phys. Lett., 98, 033107. https://doi.org/10.1063/1.3543622
  7. Cohen-Tanugi, D. and Grossman, J.C. (2012), "Water desalination across nanoporous graphene", Nano Lett., 12, 3602-3608. https://doi.org/10.1021/nl3012853
  8. Cohen-Tanugi, D. and Grossman, J.C. (2014), "Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination", J. Chem. Phys., 141, 074704. https://doi.org/10.1063/1.4892638
  9. Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C. (2016), "Multilayer nanoporous graphene membranes for water desalination", Nano Lett., 16, 1027-1033. https://doi.org/10.1021/acs.nanolett.5b04089
  10. Corry, B. (2008), "Designing carbon nanotube membranes for efficient water deasalination", J. Phys. Chem. B, 112, 1427-1434. https://doi.org/10.1021/jp709845u
  11. Dickey, J.M. and Paskin, A. (1969), "Computer simulation of the lattice dynamics of solids", Phys. Rev., 188, 1407-1418. https://doi.org/10.1103/PhysRev.188.1407
  12. Ebrahimi, S. (2015), "Influence of Stone-Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain", Solid State Commun., 220, 17-20. https://doi.org/10.1016/j.ssc.2015.06.020
  13. Ebrahimi, S. (2016), "Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation", Molecul. Simul., 42, 1485-1489. https://doi.org/10.1080/08927022.2016.1205191
  14. Ebrahimi, S. (2016), "Influence of curvature on water desalination through the graphene membrane with Sipassivated nanopore", Comput. Mater. Sci., 124, 160-165. https://doi.org/10.1016/j.commatsci.2016.07.036
  15. Einollahzadeh, H., Dariani, R.S. and Fazeli, S.M. (2016), "Computing the band structure and energy gap of penta-graphene by using DFT and $G_0W_0$ approximations", Solid State Commun., 229, 1-4. https://doi.org/10.1016/j.ssc.2015.12.012
  16. Elimelech, M. and Phillip, W.A. (2011), "The future of seawater desalination: energy, technology, and the environment", Sci., 333, 712-717. https://doi.org/10.1126/science.1200488
  17. Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D. and Golovchenko, J.A. (2010), "Graphene as a subnanometre trans-electrode membrane", Nature, 467, 190-193. https://doi.org/10.1038/nature09379
  18. Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G. and Zettl, A. (2009), "Graphene at the edge: Stability and dynamics", Sci., 323, 1705-1708. https://doi.org/10.1126/science.1166999
  19. Goh, P.S. and Ismail, A.F. (2015), "Graphene-based nanomaterial: the state-of-the-artmaterial for cutting edge desalination technology", Desalinat., 356, 115-128. https://doi.org/10.1016/j.desal.2014.10.001
  20. Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  21. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Molec. Graph., 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  22. Konatham, D., Yu, J., Ho, T.A. and Striolo, A. (2013), "Simulation insights for graphene-based water desalination membranes", Langmuir, 29, 11884-11897. https://doi.org/10.1021/la4018695
  23. Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Sci., 321, 385-388. https://doi.org/10.1126/science.1157996
  24. Lee, S.H. and Rasaiah, J.C. (1996), "Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at $25^{\circ}C$", J. Phys. Chem., 100, 1420-1425. https://doi.org/10.1021/jp953050c
  25. Li, X., Zhang, S., Wang, F.Q., Guo, Y., Liu, J. and Wang, Q. (2016), "Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination", Phys. Chem. Chem. Phys., 18(21), 14191-14197. https://doi.org/10.1039/C6CP01092J
  26. Miyamoto, S. and Kollman, P.A. (1992), "Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models", J. Comput. Chem., 13, 952-962. https://doi.org/10.1002/jcc.540130805
  27. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. and Geim, A.K. (2012), "Unimpeded permeation of water through helium-leak-tight graphene-based membranes ", Sci., 335, 442-444. https://doi.org/10.1126/science.1211694
  28. Nicolai, A., Sumpter, B.G. and Meunier, V. (2014), "Tunable water desalination across graphene oxide framework membranes", Phys. Chem. Chem. Phys., 16, 8646-8654. https://doi.org/10.1039/c4cp01051e
  29. O'Hern, S.C., Boutilier, M.S.H., Idrobo, J.C., Song, Y., Kong, J., Laoui, T., Atieh, M. and Karnik, R. (2014), "Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes", Nano Lett., 14, 1234-1241. https://doi.org/10.1021/nl404118f
  30. Pilmpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  31. Pontiea, M., Derauwa, J.S., Plantiera, S., Edouarda, L. and Baillya, L. (2013), "Seawater desalination: nanofiltration-a substitute for reverse osmosis?", Desalinat. Water Treat., 51, 485-494. https://doi.org/10.1080/19443994.2012.714594
  32. Severin, N., Lange, P., Sokolov, I.M. and Rabe, J.P. (2012), "Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore", Nano Lett., 12, 774-779. https://doi.org/10.1021/nl2037358
  33. Sint, K., Wang, B. and Kral, P. (2008), "Selective ion passage through functionalized graphene nanopores ", J. Am. Chem. Soc., 130, 16448-16449. https://doi.org/10.1021/ja804409f
  34. Suk, M.E. and Aluru, N.R. (2010), "Water transport through ultrathin graphene", J. Phys. Chem. Lett., 1, 1590-1594. https://doi.org/10.1021/jz100240r
  35. Tersoff, J. (1988), "Empirical interatomic potential for silicon with improved elastic properties", Phys. Rev. B, 38, 9902. https://doi.org/10.1103/PhysRevB.38.9902
  36. Wang, E.N. and Karnik, R. (2012), "Water desalination graphene cleans up water", Nat. Nanotechnol., 7, 552-554. https://doi.org/10.1038/nnano.2012.153
  37. Xu, W., Zhang, G. and Li, B. (2015), "Thermal conductivity of penta-graphene from molecular dynamics study", J. Chem. Phys., 143, 154703. https://doi.org/10.1063/1.4933311
  38. Xue, M., Qiu, H. and Guo, W. (2013), "Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers", Nanotechnol., 24, 505720. https://doi.org/10.1088/0957-4484/24/50/505720
  39. Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y. and Jena, P. (2015), "Penta-graphene: A new carbon allotrope", PNAS, 112, 2372-2377. https://doi.org/10.1073/pnas.1416591112
  40. Zhu, C., Li, H. and Meng, S. (2014), "Transport behavior of water molecules through two-dimensional nanopores", J. Chem. Phys., 141, 18C528. https://doi.org/10.1063/1.4898075
  41. Zhu, C., Li, H., Zeng, X.C., Wang, E.G. and Meng, S. (2013), "Quantized water transport: Ideal desalination through Graphyne-4 membrane", Sci. Rep., 3, 3163. https://doi.org/10.1038/srep03163
  42. Zhu, F., Tajkhorshid, E. and Schulten, K. (2002), "Pressure-induced water transport in membrane channels studied by molecular dynamics", Biophys. J., 83, 154-160. https://doi.org/10.1016/S0006-3495(02)75157-6