DOI QR코드

DOI QR Code

Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes

  • Nikkar, Abed (Department of Mechanical Engineering, University of Guilan) ;
  • Rouhi, Saeed (Young Researchers and Elite Club, Langarud Branch, Islamic Azad University) ;
  • Ansari, Reza (Department of Mechanical Engineering, University of Guilan)
  • 투고 : 2016.05.30
  • 심사 : 2017.07.19
  • 발행 : 2017.11.10

초록

This study concerns the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes using the finite element method. The beam elements are used to model the carbon-carbon and silicon-carbon bonds. Besides, spring elements are employed to simulate the van der Waals interactions between walls. The effects of nanotube arrangement, number of walls, geometrical parameters and boundary conditions on the frequencies of nested silicon-carbide and carbon nanotubes are investigated. It is shown that the double-walled nanotubes have larger frequencies than triple-walled nanotubes. Besides, replacing silicon carbide layers with carbon layers leads to increasing the frequencies of nested silicon-carbide and carbon nanotubes. Comparing the first ten mode shapes of nested nanotubes, it is observed that the mode shapes of armchair and zigzag nanotubes are almost the same.

키워드

참고문헌

  1. Ansari, R. and Rouhi, S. (2010), "Atomistic finite element model for axial buckling of single-walled carbon nanotubes", Physica E: Low-Dimens. Syst. Nanostruct., 43(1), 58-69. https://doi.org/10.1016/j.physe.2010.06.023
  2. Ansari, R., Rouhi, S., Aryayi, M. and Mirnezhad, M. (2012), "On the buckling behavior of single-walled silicon carbide nanotubes", ScientiaIranica, 19(6), 1984-1990.
  3. Ansari, R., Rouhi, S., Mirnezhad, M. and Aryayi, M. (2013), "Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression", Physica E: Low-Dimens. Syst. Nanostruct., 53, 22-28.
  4. Ansari, R., Mirnezhad, M. and Rouhi, H. (2015), "Buckling of multi-walled silicon carbide nanotubes under axial compression via a molecular mechanics model", Appl. Phys. A, 118(3), 845-854. https://doi.org/10.1007/s00339-014-8945-7
  5. Ansari, R., Rouhi, S. and Aryayi, M. (2016), "On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models", Int. J. Modern Phys. B, 30(5), 1650007. https://doi.org/10.1142/S0217979216500077
  6. Ansari, R. and Rouhi, S. (2016), "Vibrational analysis of singlelayered silicon carbide nanosheets and single-walled silicon carbide nanotubes using nanoscale finite element method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(18), 0954406216645129. https://doi.org/10.1177/0954406216645129
  7. Borowiak-Palen, E., Ruemmeli, M.H., Gemming, T., Knupfer, M., Biedermann, K., Leonhardt, A., Pichler, T. and Kalenczuk, R.J. (2005), "Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution", J. Appl. Phys., 97(5), 056102. https://doi.org/10.1063/1.1853493
  8. Cheng, G., Chang, T.H., Qin, Q., Huang, H. and Zhu, Y. (2014), "Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density", Nano Lett., 14(2), 754-758. https://doi.org/10.1021/nl404058r
  9. Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
  10. Gelin, B.R. (1994), Molecular Modeling of Polymer Structures and Properties, Carl HanserVerlag, Munich, Germany.
  11. Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double-walled carbon nanotube", Struct. Eng. Mech., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987
  12. Hanchen, H. and Ghoniem, N. (1993), "Neutron displacement damage cross sections for SiC", J. Nucl. Mater., 199(3), 221-230. https://doi.org/10.1016/0022-3115(93)90143-M
  13. Huczko, A., Bystrzejewski, M., Lange, H., Fabianowska, A., Cudzilo, S., Panas, A. and Szala, M. (2005), "Combustion synthesis as a novel method for production of 1-D SiCnanostructures", J. Phys. Chem. B, 109(34), 16244-16251. https://doi.org/10.1021/jp050837m
  14. Khani, N., Fakhrabadi, M.M.S., Vahabi, M. and Kamkari, B. (2014), "Modal analysis of silicon carbide nanotubes using structural mechanics", Appl. Phys. A, 116(4), 1687-1694. https://doi.org/10.1007/s00339-014-8325-3
  15. Le, M.Q. (2014a), "Young's modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations", Meccanica, 49(7), 1709-1719. https://doi.org/10.1007/s11012-014-9976-z
  16. Le, M.Q. (2014b), "Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets", J. Comput. Theor. Nanosci., 11(6), 1458-1464. https://doi.org/10.1166/jctn.2014.3518
  17. Leach, A.R. (1996), Molecular Modeling Principles and Applications, Addison Wesley Longman Limited, London, England.
  18. Li, C. and Chou, T.W. (2004), "Elastic properties of single-walled carbon nanotubes in transverse directions", Phys. Rev. B, 69(7), 073401. https://doi.org/10.1103/PhysRevB.69.073401
  19. Lin, Z.J., Wang, L., Zhang, J., Guo, X.Y., Yang, W., Mao, H.K. and Zhao, Y. (2010), "Nanoscale twinning-induced elastic strengthening in silicon carbide nanowires", Scripta Mater., 63(10), 981-984. https://doi.org/10.1016/j.scriptamat.2010.07.023
  20. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B. and Burns, M. (1994), "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies", J. Appl. Phys., 76(3), 1363-1398. https://doi.org/10.1063/1.358463
  21. Nhut, J.M., Vieira, R., Pesant, L., Tessonnier, J.P., Keller, N., Ehret, G., Pham-Huu, C. and Ledoux, M.J. (2002), "Synthesis and catalytic uses of carbon and silicon carbide nanostructures", Catal. Today, 76(1), 11-32. https://doi.org/10.1016/S0920-5861(02)00206-7
  22. Odegard, G.M., Gates, T.S., Nicholson, L.M. and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol., 62(14), 1869-1880. https://doi.org/10.1016/S0266-3538(02)00113-6
  23. Pan, H. and Si, X. (2009), "Molecular dynamics simulations of diameter dependence tensile behavior of silicon carbide nanotubes", Physica B: Condens. Mat., 404(12), 1809-1812. https://doi.org/10.1016/j.physb.2009.02.028
  24. Pei, L.Z., Tang, Y.H., Chen, Y.W., Guo, C., Li, X.X., Yuan, Y. and Zhang, Y. (2006), "Preparation of silicon carbide nanotubes by hydrothermal method", J. Appl. Phys., 99(11), 114306. https://doi.org/10.1063/1.2202111
  25. Persson, C. and Lindefelt, U. (1996), "Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap", Phys. Rev. B, 54(15), 10257. https://doi.org/10.1103/PhysRevB.54.10257
  26. Rouhi, S. and Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Physica E: Low-Dimens. Syst. Nanostruct., 44(4), 764-772. https://doi.org/10.1016/j.physe.2011.11.020
  27. Rouhi, S., Ansari, R. and Shahnazari, A. (2016), "Vibrational characteristics of single-layered boron nitride nanosheet/singlewalled boron nitride nanotube junctions using finite element modeling", Mater. Res. Express, 3(12), 125027. https://doi.org/10.1088/2053-1591/aa50bd
  28. Setoodeh, A.R., Jahanshahi, M. and Attariani, H. (2009), "Atomistic simulations of the buckling behavior of perfect and defective silicon carbide nanotubes", Comput. Mater. Sci., 47(2), 388-397. https://doi.org/10.1016/j.commatsci.2009.08.017
  29. Shahnazari, A., Ansari, R. and Rouhi, S. (2017), "A density functional theory-based finite element method to study the vibrational characteristics of zigzag phosphorene nanotubes", Appl. Phys. A, 123(4), 263.
  30. Sun, X.H., Li, C.P., Wong, W.K., Wong, N.B., Lee, C.S., Lee, S.T. and Teo, B.K. (2002), "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes", J. Am. Chem. Soc., 124(48), 14464-14471. https://doi.org/10.1021/ja0273997
  31. Wang, Z.G., Li, J.B., Gao, F. and Weber, W.J. (2010), "Tensile and compressive mechanical behavior of twinned silicon carbide nanowires", Acta Mater., 58(6), 1963-1971. https://doi.org/10.1016/j.actamat.2009.11.039
  32. Zhang, A., Gu, X., Liu, F., Xie, Y., Ye, X. and Shi, W. (2012), "A study of the size-dependent elastic properties of silicon carbide nanotubes: First-principles calculations", Phys. Lett. A, 376(19), 1631-1635. https://doi.org/10.1016/j.physleta.2012.03.035

피인용 문헌

  1. Observation of behavior of the Ahlat Gravestones (TURKEY) at seismic risk and their recognition by QR code vol.72, pp.5, 2017, https://doi.org/10.12989/sem.2019.72.5.643