DOI QR코드

DOI QR Code

Influence of the Culture Media and the Organic Matter in the Growth of Paxillus ammoniavirescens (Contu & Dessi)

  • Received : 2017.01.26
  • Accepted : 2017.07.03
  • Published : 2017.09.01

Abstract

The genus Paxillus is characterized by the difficulty of species identification, which results in reproducibility problems, as well as the need for large quantities of fungal inoculum. In particular, studies of Paxillus ammoniavirescens have reported divergent results in the in vitro growth while little is known of its capacity to degrade organic matter. For all the above, and assuming that this variability could be due to an inappropriate culture media, the aim of this study was to analyse growth in different culture media (MMN, MS, and 1/2 MS) and in the case of MMN in presence/absence of two types of organic matter (fresh litter and senescence litter) to probe the saprophytic ability of P. ammoniavirescens. We also evaluated the effects of pH changes in the culture media. Growth kinetics was assessed by weekly quantification of the area of growth in solid culture media over 5 wk, calculating the growth curves and inflection points of each culture media. In addition, final biomass after 5 wk in the different culture media was calculated. Results showed that best culture media are MS and 1/2 MS. Moreover, an improvement in growth in culture media containing decomposing fall litter was observed, leading to confirm differences in the culture media of this species with others of the same genus. Further, we established that all growth media suffered a significant acidification after fungal growth.

Keywords

References

  1. Wallander H, Soderstrom B. Paxillus. In: Carney JW, Chambers SM, editors. Ectomycorrhizal fungi: key genera in profile. Berlin: Spinger-Verlag; 1999. p. 231-52.
  2. Jargeat P, Chaumeton JP, Navaud O, Vizzini A, Gryta H. The Paxillus involutus (Boletales, Paxillaceae) complex in Europe: genetic diversity and morphological description of the new species Paxillus cuprinus, typification of P. involutus s.s., and synthesis of species boundaries. Fungal Biol 2014;118:12-31. https://doi.org/10.1016/j.funbio.2013.10.008
  3. Laiho O. Paxillus involutus as a mycorrhizal symbiont of forest trees. Acta For Fenn 1970;106:1-73.
  4. Fries N. Intersterility groups in Paxillus involutus. Mycotaxon 1985;24:403-10.
  5. Hahn C, Agerer R. Studium zum Paxillus involutus Formenkreis. Nova Hedwigia 1999;69:241-310.
  6. Bormann C, Baier D, Horr I, Raps C, Berger J, Jung G, Schwarz H. Characterization of a novel, antifungal, chitinbinding protein from Streptomyces tendae Tu901 that interferes with growth polarity. J Bacteriol 1999;181:7421-9.
  7. Bresinsky A. Observations on mycobiota in Estonia. Folia Cryptogam Est 2006;42:1-9.
  8. Hedh J, Samson P, Erland S, Tunlid A. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus. Mycol Res 2008;112(Pt 5):965-75. https://doi.org/10.1016/j.mycres.2008.01.026
  9. Vellinga EC, Blanchard EP, Kelly S, Contu M. Paxillus albidulus, P. ammoniavirescens, and P. validus revisited. Mycotaxon 2012;119:351-9. https://doi.org/10.5248/119.351
  10. Marx DH. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infection. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 1969;59:153-63.
  11. Molina R, Palmer JG. Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St. Paul (MN): APS Press; 1982. p. 115-29.
  12. Danell E. Cantharellus cibarius: mycorrhiza formation and Ecology. Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 35. Uppsala: Swedish University of Agricultural Sciences; 1994.
  13. Colpaert JV, van Tichelen KK. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytol 1996;134:123-32. https://doi.org/10.1111/j.1469-8137.1996.tb01152.x
  14. Fernandez R, Bertrand A, Casares A, Garcia R, Gonzalez A, Tames RS. Cadmium accumulations and its effect on the in vitro growth of woody fleabane and mycorrhized white birch. Environ Pollut 2008;152:522-9. https://doi.org/10.1016/j.envpol.2007.07.011
  15. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.
  16. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-7. https://doi.org/10.1093/nar/gkh340
  17. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012;9:772.
  18. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974;19:716-23. https://doi.org/10.1109/TAC.1974.1100705
  19. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539-42. https://doi.org/10.1093/sysbio/sys029
  20. Tavare S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 1986;17:57-86.
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9. https://doi.org/10.1093/molbev/msr121
  22. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Fernandez-Miranda Cagigal E, Alvarado Garcia P, Alonso-Grana Lopez M, Majada Guijo J, Casares Sanchez A. Influencia de las condiciones culturales en el crecimiento de diferentes hongos ectomicorricicos. Cuad Soc Esp Cienc For 2008;28:207-11.
  24. French ER, Hebert TT. Metodos de investigacion fitopatologica. In: de la Cruz M, editor. Serie de Libros y Materiales educativos. Vol. 43. San Jose (CA): Instituto Interamericano de Cooperacion para la Agicultura; 1980. p. 47-56.
  25. Moser M. Die Gattung Phlegmacium (Schleimkopfe). Die Pilze Mitteleuropa, Bd. IV. Bad Heilbrunn: J. Klinkhardt; 1960.