DOI QR코드

DOI QR Code

Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens

  • Park, Jong Myong (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute for Microorganisms, Kyungpook National University) ;
  • You, Young-Hyun (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Park, Jong-Han (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Hyeong-Hwan (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ghim, Sa-Youl (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute for Microorganisms, Kyungpook National University) ;
  • Back, Chang-Gi (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2017.05.02
  • Accepted : 2017.07.03
  • Published : 2017.09.01

Abstract

Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.

Keywords

References

  1. Dennis DJ. Observations of fungus gnat damage to glasshouse cucurbits. N Z J Exp Agric 1978;6:83-4.
  2. Ludwig SW, Oetting RD. Evaluation of medium treatments for management of Frankliniella occidentalis (Thripidae: Thysanoptera) and Bradysia coprophila (Diptera: Sciaridae). Pest Manag Sci 2001;57:1114-8. https://doi.org/10.1002/ps.404
  3. Akbari S, Oshaghi MA, Hashemi-Aghdam SS, Hajikhani S, Oshaghi G, Shirazi MH. Aerobic bacterial community of American cockroach Periplaneta americana, a step toward finding suitable paratransgenesis candidates. J Arthropod Borne Dis 2014;9:35-48.
  4. Beard CB, Cordon-Rosales C, Durvasula RV. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 2002;47:123-41. https://doi.org/10.1146/annurev.ento.47.091201.145144
  5. Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi AA, Enayati AA, Mardani N, Ghoorchian S. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop 2012;121:129-34. https://doi.org/10.1016/j.actatropica.2011.10.015
  6. Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasit Vectors 2014;7:419. https://doi.org/10.1186/1756-3305-7-419
  7. Liu HM, Yang PP, Cheng P, Wang HF, Liu LJ, Huang X, Zhao YQ, Wang HW, Zhang CX, Gong MQ. Resistance level of mosquito species (Diptera: Culicidae) from Shandong province, China. Int J Insect Sci 2015;19:47-52.
  8. Gardiner RB, Jarvis WR, Shipp JL. Ingestion of Pythium spp. by larvae of the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann Appl Biol 1990;116:205-12. https://doi.org/10.1111/j.1744-7348.1990.tb06600.x
  9. Evans MR, Smith JN, Cloyd RA. Fungus gnat population development in coconut coir and Sphagnum peat-based substrates. HortTechnology 1998;8:406-9.
  10. Kim HH, Jeon HY, Yang CY, Kang TJ, Han YK. Transmission of Fusarium oxysporum by the fungus gnat, Bradysia difformis (Diptera: Sciaridae). Res Plant Dis 2009;15:262-5. https://doi.org/10.5423/RPD.2009.15.3.262
  11. Dillon RJ, Dillon VM. The gut bacteria of insets: nonpathogenic interactions. Annu Rev Entomol 2004;49:71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  12. Gaio Ade O, Gusmao DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (Diptera: Culicidae) (L.). Parasit Vectors 2011;4:105. https://doi.org/10.1186/1756-3305-4-105
  13. Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R. Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg 2008;79:881-6. https://doi.org/10.4269/ajtmh.2008.79.881
  14. Valiente Moro C, Tran FH, Raharimalala FN, Ravelonandro P, Mavingui P. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol 2013;13:70. https://doi.org/10.1186/1471-2180-13-70
  15. You YH, Park JM, Yi PH, Back CG, Park MJ, Han KS, Yoon JB, Kim HH, Park JH. Microflora of a phytopathogen transferring Bradysia agrestis, a step toward finding ideal candidates for paratransgenesis. Symbiosis 2017;71:35-46. https://doi.org/10.1007/s13199-016-0412-0
  16. Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafari R, et al. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic zoonotic cutaneous leishmaniasis (ZCL) focus. Parasit Vectors 2015;8:63. https://doi.org/10.1186/s13071-014-0517-3
  17. Barnard PC. The royal entomological Society Book of British Insects. Hoboken (NJ): Wiley-Blackwell; 2011. p. 191-201.
  18. You YH, Park JM, Park JH, Kim JG. Endophyte distribution and comparative analysis of diversity in wetlands showing contrasting geomorphic conditions. Symbiosis 2016;69:21-36. https://doi.org/10.1007/s13199-015-0363-x
  19. Park JM, You YH, Back CG, Kim HH Ghim SY, Park JH. Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector. Symbiosis 2017 May 19 [Epub]. https://doi.org/10.1007/s13199-017-0494-3.
  20. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1989. p. 315-22.
  21. Tang YW, von Graevenitz A, Waddington MG, Hopkins MK, Smith DH, Li H, Kolbert CP, Montgomery SO, Persing DH. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol 2000;38:1676-8.
  22. Yoon JH, Kang SJ, Lee SY, Lee MH, Oh TK. Virgibacillus dokdonensis sp. nov., isolated from a Korean island, Dokdo, located at the edge of the East Sea in Korea. Int J Syst Evol Microbiol 2005;55(Pt 5):1833-7. https://doi.org/10.1099/ijs.0.63613-0
  23. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008;14:908-34. https://doi.org/10.1111/j.1469-0691.2008.02070.x
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783-91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  28. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 2006;103:626-31. https://doi.org/10.1073/pnas.0507535103
  29. Margalef DR. Information theory in ecology. Gen Syst 1958;3:36-71.
  30. Whittaker RH. Evolution of species diversity in land communities. In: Hecht MK, Steere BW, editors. Evolutionary biology. Vol. 10. New York: Plenum Press; 1972. p. 1-67.
  31. Lambshead PJ, Platt HM, Shaw KM. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 1983;17:859-74. https://doi.org/10.1080/00222938300770671
  32. van Emden HF, Service MW. Pest and vector control. Cambridge: Cambridge University Press; 2004. p. 102-3.
  33. De Lucca AJ. Harmful fungi in both agriculture and medicine. Rev Iberoam Micol 2007;24:3-13. https://doi.org/10.1016/S1130-1406(07)70002-5
  34. Farh ME, Kim YJ, Singh P, Yang DC. Cross interaction between Ilyonectria mors-panacis isolates infecting Korean ginseng and ginseng saponins in correlation with their pathogenicity. Phytopathology 2017;107:561-9. https://doi.org/10.1094/PHYTO-05-16-0210-R
  35. Torres DE, Rojas-Martinez RI, Zavaleta-Mejia E, Guevara-Fefer P, Marquez-Guzman GJ, Perez-Martinez C. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS One 2017;12:e0170782. https://doi.org/10.1371/journal.pone.0170782
  36. Walker C, Muniz MF, Rolim JM, Martins RR, Rosenthal VC, Maciel CG, Mezzomo R, Reiniger LR. Morphological and molecular characterization of Cladosporium cladosporioides species complex causing pecan tree leaf spot. Genet Mol Res 2016;15:gmr.15038714.
  37. Ladjal S, Harzallah D, Dahamna S, Bouamra D, Bouharati S, Khennouf S. Endophytic fungi isolated from Pinus halepensis needles in M'sila (Algeria) region and their bioactivities. Commun Agric Appl Biol Sci 2013;78:625-31.
  38. Lu YH, Jin LP, Kong LC, Zhang YL. Phytotoxic, antifungal and immunosuppressive metabolites from Aspergillus terreus QT122 isolated from the gut of dragonfly. Curr Microbiol 2017;74:84-9. https://doi.org/10.1007/s00284-016-1157-y
  39. Berger B, Baldermann S, Ruppel S. The plant growthpromoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. J Sci Food Agric 2017 Apr 6 [Epub]. https://doi.org/10.1002/jsfa.8357.
  40. Bergottini VM, Filippidou S, Junier T, Johnson S, Chain PS, Otegui MB, Zapata PD, Junier P. Genome sequence of Kosakonia radicincitans strain YD4, a plant growth-promoting rhizobacterium isolated from Yerba Mate (Ilex paraguariensis St. Hill.). Genome Announc 2015;3:e00239-15.
  41. Trivedi P, Pandey A, Sa T. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J Basic Microbiol 2007;47:513-7. https://doi.org/10.1002/jobm.200700224
  42. Jung BK, Khan AR, Hong SJ, Park GS, Park YJ, Park CE, Jeon HJ, Lee SE, Shin JH. Genomic and phenotypic analyses of Serratia fonticola strain GS2: a rhizobacterium isolated from sesame rhizosphere that promotes plant growth and produces N-acyl homoserine lactone. J Biotechnol 2017;241:158-62. https://doi.org/10.1016/j.jbiotec.2016.12.002
  43. Lim YL, Yong D, Ee R, Krishnan T, Tee KK, Yin WF, Chan KG. Complete genome sequence of Serratia fonticola DSM 4576 T, a potential plant growth promoting bacterium. J Biotechnol 2015;214:43-4. https://doi.org/10.1016/j.jbiotec.2015.09.005
  44. Wilke AB, Marrelli MT. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 2015;8:342. https://doi.org/10.1186/s13071-015-0959-2
  45. Walters D. Disease control in crops: biological and environmentally-friendly approaches. Chichester: Wiley-Blackwell; 2009.
  46. Ambardar S, Vakhlu J. Plant growth promoting bacteria from Crocus sativus rhizosphere. World J Microbiol Biotechnol 2013;29:2271-9. https://doi.org/10.1007/s11274-013-1393-2
  47. Lee S, Ka JO, Song HG. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J Microbiol 2012;50:45-9. https://doi.org/10.1007/s12275-012-1415-z
  48. Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gomez S, Pajuelo E, Rodriguez-Llorente ID. Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Mar Pollut Bull 2015;90:150-9. https://doi.org/10.1016/j.marpolbul.2014.11.002
  49. Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 2010;20:1577-84. https://doi.org/10.4014/jmb.1007.07011
  50. Madigan MT, Martinko J. Brock biology of microorganisms. 12th ed. New York: Pearson Education Asia; 2011.
  51. Noirot P, Noirot-Gros MF. Protein interaction networks in bacteria. Curr Opin Microbiol 2004;7:505-12. https://doi.org/10.1016/j.mib.2004.08.005
  52. Yadav KK, Bora A, Datta S, Chandel K, Gogoi HK, Prasad GB, Veer V. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit Vectors 2015;8:641. https://doi.org/10.1186/s13071-015-1252-0
  53. Nam MH, Park MS, Kim HS, Kim TI, Kim HG. Cladosporium cladosporioides and C. tenuissimum cause blossom blight in strawberry in Korea. Mycobiology 2015;43:354-9. https://doi.org/10.5941/MYCO.2015.43.3.354
  54. Barton LL, Northup DE. Microbial ecology. Hoboken (NJ): Wiley-Blackwell; 2011.
  55. Cha JY, Lee JS, Oh JI, Choi JW, Baik HS. Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: Fur controls expression of genes involved in quorum-sensing. Biochem Biophys Res Commun 2008;366:281-7. https://doi.org/10.1016/j.bbrc.2007.11.021
  56. Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, Lai YM, Liu JR, Yang YL, Shih MC. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 2016;6:32950. https://doi.org/10.1038/srep32950
  57. Song YR, Choi MS, Choi GW, Park IK, Oh CS. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol J 2016;32:363-70. https://doi.org/10.5423/PPJ.NT.01.2016.0006
  58. Soto-Rodriguez SA, Cabanillas-Ramos J, Alcaraz U, Gomez-Gil B, Romalde JL. Identification and virulence of Aeromonas dhakensis, Pseudomonas mosselii and Microbacterium paraoxydans isolated from Nile tilapia, Oreochromis niloticus, cultivated in Mexico. J Appl Microbiol 2013;115:654-62. https://doi.org/10.1111/jam.12280
  59. Tannock GW. Normal microflora: an introduction to microbes inhabiting the human body. Alphen aan den Rijn: Springer Netherlands; 1994.
  60. Barzon L, Trevisan M, Sinigaglia A, Lavezzo E, Palu G. Zika virus: from pathogenesis to disease control. FEMS Microbiol Lett 2016;363:fnw202. https://doi.org/10.1093/femsle/fnw202
  61. Leon G. Epidemiology. New York: Elsevier Science Health Science; 2004.
  62. Olafson PU, Lohmeyer KH, Edrington TS, Loneragan GH. Survival and fate of Salmonella enterica serovar Montevideo in adult horn flies (Diptera: Muscidae). J Med Entomol 2014;51:993-1001. https://doi.org/10.1603/ME13217
  63. Hail D, Lauziere I, Dowd SE, Bextine B. Culture independent survey of the microbiota of the glassy-winged sharpshooter (Homalodisca vitripennis) using 454 pyrosequencing. Environ Entomol 2011;40:23-9. https://doi.org/10.1603/EN10115
  64. Chaiwong T, Srivoramas T, Sueabsamran P, Sukontason K, Sanford MR, Sukontason KL. The blow fly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand. Trop Biomed 2014;31:336-46.