DOI QR코드

DOI QR Code

바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries

  • 이재명 (한국에너지기술연구원 수소연료전지산학연협력센터) ;
  • 이미순 (한국에너지기술연구원 수소연료전지산학연협력센터) ;
  • 남기석 (전북대학교 대학원 에너지저장변환공학과) ;
  • 전재덕 (한국에너지기술연구원 수소연료전지산학연협력센터) ;
  • 윤영기 (한국에너지기술연구원 수소연료전지산학연협력센터) ;
  • 최영우 (한국에너지기술연구원 수소연료전지산학연협력센터)
  • Lee, Jae-Myeong (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research) ;
  • Lee, Mi-Soon (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research) ;
  • Nahm, Ki-Seok (Department of Energy Storage and Conversion Engineering) ;
  • Jeon, Jae-Deok (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research) ;
  • Yoon, Young-Gi (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research) ;
  • Choi, Young-Woo (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research)
  • 투고 : 2017.10.20
  • 심사 : 2017.10.26
  • 발행 : 2017.10.31

초록

바나듐 산화환원 흐름 전지에 핵심적으로 사용되는 이온교환막은 일반적으로 양이온교환막을 사용하고 있으나 co-ion인 바나듐 이온의 투과에 의한 장기적 성능 저하 문제를 해결하기 어렵다. 따라서 본 연구에서는 바나듐 투과도 및 장기 운전 안정성의 특성을 파악하기 위해 세 가지 다른 관능기를 보유한 음이온교환막을 제조하였다. 기저막으로는 다공성 폴리에틸렌 필름에 benzyl chloride (VBC)과 divinylbenzene (DVB)을 충진 및 가교 중합하여 제조한 후, 세 가지 다른 아민 관능기를 각각 도입하였다. 제조된 음이온교환막들에 대해 바나듐 이온 투과 정도 및 장기 운전 안정성을 관찰한 결과 triethylamine을 관능기로 적용한 음이온교환막에서 높은 에너지효율을 유지하면서도 가장 장기적 운전 안정성을 확보할 수 있었다.

Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

키워드

참고문헌

  1. V. M. Barragan, J. P. G. Villaluenga, M. P. Godino, M. A. Izquierdo-Gil, C. Ruiz-Bauza, and B. Seoane, "Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies", J. Colloid Interface Sci., 333, 497 (2009). https://doi.org/10.1016/j.jcis.2009.02.015
  2. D. H. Lee, Y. S. Kang, and J. H. Kim, "Olefin separation performances and coordination behaviors of facilitated transport membranes based on poly(styrene-b-isoprene-b-styrene)/silver salt complexes", Macromol. Res., 17, 104 (2009). https://doi.org/10.1007/BF03218662
  3. H. ohya, T. Ohto, T. Sawamura, H. Honda, K. Matsumoto, and Y. Negish, "Electrical-resistivity and permeabilities of composite membranes based on a cation exchange membrane", Denki Kagaku, 56, 34 (1988).
  4. F de Korosy and J. Shorr, "Synthesis and characterization of IPA-co-HDO-co-(TPA/MA) anion-exchange membrane for all-vanadium redox flow battery", DeChema Mogr., 47, 477 (1992).
  5. C. J. Rydh, "Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage", J. Power Sources, 80, 21 (1999). https://doi.org/10.1016/S0378-7753(98)00249-3
  6. A. Shibata and K. Sato, "Development of vanadium redox flow battery for electricity storage", Power Eng. J., 13, 130 (1993).
  7. Ch. Fabjan, J. Garche, B, Hatter. L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, and F. Wanger, "The vanadium redox-battery: an efficient storage unit for photovoltaic systems", Electrochim Acta, 47, 825 (2001). https://doi.org/10.1016/S0013-4686(01)00763-0
  8. T. Mohammadi and M. S. Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  9. G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  10. Y. Choi, H. S. Lee, and T. S. Hwang, "Preparation and properties of heterogeneous cation exchange membrane for recovery of ammonium ion from waste water", Polymer (Korea), 30, 486 (2006).
  11. S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang, and M. A. Hickner, "Cycling performance and efficiency of sulfonated poly (sulfone) membranes in vanadium redox flow batteries", Electrochem. Comm., 12, 1650 (2010). https://doi.org/10.1016/j.elecom.2010.09.018
  12. C. Jia, J. Liu, and C. Yan, "A significantly improved membrane for vanadium redox flow battery", J. Power Sources, 195, 4380 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.008
  13. Y. M. Baek, N. S. Kwak, and T. S. Hwang, "Synthesis and characterization of vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate (VBCco- St-co-HEA) anion-exchange membrane for all-vanadium redox flow battery", Polymer (Korea), 35, 586 (2011). https://doi.org/10.7317/pk.2011.35.6.586
  14. T. Yamaguchi, F. Miyata, and S. Nakao, "Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
  15. T. Yamaguchi, F. miyata, and S. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00579-3
  16. T. Yamaguchi, H. Kuroki, and F. miyata, "DMFC performances using a pore-filling polymer electrolyte membrane for portable usages", Electrochem. Commun., 7, 730 (2005). https://doi.org/10.1016/j.elecom.2005.04.030
  17. T. Yamaguchi, H Zhou, S. Nakazawa, and N. Hara, "An extremely low methanol crossover and highly durable aromatic pore filling electrolyte membrane for direct methanol fuel cells", Adv. Mater., 19, 592 (2007). https://doi.org/10.1002/adma.200601086
  18. Y. Yin, Y. Suto, T. Sakabe, S. Chen, S. Hayashi, and T. Mishima, "Water stability of sulfonated polyimide membranes", Macromol., 39, 1189 (2006). https://doi.org/10.1021/ma0523769
  19. S. Bhadra, N. H. Kim, and J. H. Lee, "A new self-cross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells", J. Membr. Sci., 349, 304 (2010). https://doi.org/10.1016/j.memsci.2009.11.061
  20. H. S. Choi, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Research review of the all vanadium redox- flow battery for large scale power storage", Membr. J., 21, 107 (2011).
  21. J. G. Kim, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Durability of cation exchange membrane containing Psf (polysulfone) in the all-vanadium redox battery", Membr. J., 21, 141 (2011).
  22. I. C. Na, H. S. Jo, C. H. Ryu, and G. J. Hwang, "Study on a separator for Zn-Br redox flow battery", Membr. J., 24, 286 (2014).
  23. M. S. Lee, H. G. Kang, J. D. Jeon, Y. W. Choi, and Y. G. Yoon, "A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries", RSC Adv., 6, 63023 (2016). https://doi.org/10.1039/C6RA07790K