참고문헌
- S. G. Cho, D.-I. Cheong, E. M. Goh, and J. H. Chung, "Technical Review on Reactive Structural Materials," Defense Science & Technology Plus, Vol. 165, pp. 1-11, 2012.
- R. M. Lioyd, "Conventional Warhead Systems. Physics and Engineering Design," American Institute of Aeronautics and Atronautics, Vambridge, USA, 1998, Chapter 6.
- "Advanced Energetic Materials," National Research Council of the National Academies, National Academies Press, Washington D.C., USA, 2004, Chapter 4.
- B. E. Homan, K. L. McNesby, J. Ritter, J. Colburn, and Andrew Brant, "Characterization of the Combustion Behavior of Aluminum-Nickel Based Reactive Materials," ARL-TR-5125, Army Research Laboratory, 2009.
- R. V. Reeves, A. S. Mukasyan, and S. F. Son, "Thermal and Impact Reaction Initiation in Ni/Al Heterogeneous Reactive Systems," J. Phys. Chem. C, Vol. 114, pp. 14772-14780, 2010.
- H. F. Wang, Y. F. Zheng, Q. B. Yu, Z. W. Liu, and W. M. Yu, "Impact-induced Initiation and Energy Release Behavior of Reactive Materials," J. Appl. Phys., Vol. 110, pp. 074904-1-074904-6, 2011. https://doi.org/10.1063/1.3644974
- J. M. Densmore, M. M. Biss, B. E. Homan, and K. L. McNesby, "Thermal Imaging of Nickelaluminum and Aluminum-polytetrafluoroethylene Impact Initiated Combustion," J. Appl. Phys., Vol. 112, pp. 084911-1-084911-5, 2012. https://doi.org/10.1063/1.4762009
- X. R. Zhang, A. S. Shi, L. Qiao, J. Zhang, Y. G. Zhang, and Z. W. Guan, "Experimental Study on Impact-initiated Characters of Multifunctional Energetic Structural Materials," J. Appl. Phys., Vol. 113, pp. 083508-1-083508-10, 2013. https://doi.org/10.1063/1.4793281
- E. L. Dreizin, "Metal-based Reactive Nanomaterials," Prog. Energy Combust. Sci., Vol. 35, pp. 141-157, 2009. https://doi.org/10.1016/j.pecs.2008.09.001
- J. J. Ritter, A. L. Brant, J. W. Colburn, B. E. Homan and K. L. McNesby, "Characterization Techniques Employed to Determine the Energy Release of Reactive Materials," ARL-TR-5125, Army Research Laboratory, 2010.
- L. Michalski, K. Eckersdorf and J. McGhee, "Temperature Measurement," John Wiley & Sons, Chichest, England, Chapter 7, 1991.
- P. R. N. Childs, "Practical Temperature Measurement," Butterworth-Heinemann, Oxford, Great Britain, Chapter 9, 2001.
- S. Goroshin, D. F. Frost, J. Levine, A. Yoshinaka and F. Zhang, "Optical Pyrometry of Fireballs of Metallized Explosives," Propel. Explos. Pyrotech. Vol. 31, pp. 169-181, 2006. https://doi.org/10.1002/prep.200600024
- K. L. McNesby, B. E. Homan, R. A. Benjamin, V. M. Boyle, J. M. Densmore and M. M. Biss, "Invited Article: Quantitative Imaging of Explosions with High-speed Cameras," Rev. Sci. Instrum., Vol. 87, pp. 051301-1-051301-14, 2016. https://doi.org/10.1063/1.4949520
- J. M. Densmore, B. E. Homan, M. M. Biss, and K. L. McNesby, "High-speed Two-camera Imaging Pyrometer for Mapping Fireball Temperatures," Appl. Opts., Vol. 50, pp. 6267-6271, 2011. https://doi.org/10.1364/AO.50.006267
- Vision Research, "v7.3 Spectral Response," http://www.visionresearch.com/uploads/Docs/SpectralResponse/V7.3SensorSpectralResponse.pdf.
- D. R. Lide, "Handbook of Chemistry and Physics," 84th Ed., CRC Press, 2004.
- K. L. Cashdollor and I. A. Zlochower, "Explosion Temperatures and Pressures of Metals and Other Element Dust Clouds," J. Loss Prev. Process Indust., Vol. 20, pp. 337-348, 2007. https://doi.org/10.1016/j.jlp.2007.04.018