DOI QR코드

DOI QR Code

3차원 X-ray CT 영상을 이용한 화성암 불균질 지수와 역학적 특성과의 상관관계에 대한 연구

A Study on Correlation between Heterogeneity Index and Mechanical Properties of Igneous Rocks using 3D X-ray Computed Tomography Image

  • 정연종 (연세대학교 공과대학 토목환경공학과 통합과정) ;
  • 김광염 (한국건설기술연구원 지반연구소) ;
  • 윤태섭
  • 투고 : 2017.10.22
  • 심사 : 2017.10.26
  • 발행 : 2017.10.31

초록

본 연구에서는 국내의 다양한 화성암에 대해 내부구조의 불균질성을 정량화하고, 이와 탄성파속도 및 점하중강도간의 상관관계를 분석하였다. 3차원 X-ray Computed Tomography(CT)를 통해 암석 시편 내부 구조에 대한 정보를 획득하였으며, 3차원 영상에 통계적 기법을 적용하여 뷸균질성 대표계수(representative unit length, LR)를 계산하였다. 또한 암석의 탄성파 속도 및 점하중강도와 LR간의 상관관계로부터 암석의 역학적 특성치를 예측하는 추정식을 제안하였다. 본 연구에서 제안한 방법을 통해 3차원 X-ray 영상에 기반한 내부 특성 분석값을 이용해 실내실험을 수행하지 않고도 암석의 역학적 물성을 평가할 수 있는 간접적인 인자를 도출할 수 있는 가능성을 확인하였다.

In this study, the heterogeneity of internal structure of various igneous rocks acquired in Korea was quantified and correlated with the seismic velocity and the point load strength. Three-dimensional X-ray Computed Tomography (CT) was used to obtain information on the internal structure of the rock specimen, and the representative unit length (LR) was calculated by applying a statistical technique to the CT images. We also proposed an estimation equation to predict the mechanical properties of rocks from the relationship between LR, acoustic velocity and point load strength. In the proposed method, it is shown that the characterization of internal structure of rocks could be utilized as an indirect index to account for the mechanical behavior of rocks by substituting physical laboratory testing for non-destructive test.

키워드

참고문헌

  1. ASTM, 1986, Standard test method of unconfined compressive strength of intact rock core specimens, D2938.
  2. ASTM, 2000, Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock, D2845-00.
  3. Azimian, A., Ajalloeian, R., and Fatehi, L., 2014, An empirical correlation of uniaxial compressive strength with P-wave velocity and point load strength index on Marly rocks using statistical method, Geotech Geol Gng. 32, 205-214. https://doi.org/10.1007/s10706-013-9703-x
  4. Basu, A. and Aydin, A., 2006, Predicting uniaxial compressive strength by point load test: significance of cone penetration, Rock Mech. Rock Eng. 39.5, 483-490. https://doi.org/10.1007/s00603-006-0082-y
  5. Blair, S.C., Berge, P.A., and Berryman, J.G., 1996, Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass, Journal of Geophysical Research, 101.9, 20359-20375. https://doi.org/10.1029/96JB00879
  6. Brattli, B., 1992, The influence of geological factors on the mechanical properties of basic igneous rocks used as road surface aggregates, Engineering Geology, 33, 31-44. https://doi.org/10.1016/0013-7952(92)90033-U
  7. Bruno G, Vessia G, and Bobbo L, 2013, Statistical method for assessing the uniaxial compressive strength of carbonate rock by Schmidt hammer tests performed on core samples. Rock Mech Rock Eng. 46, 199-206. https://doi.org/10.1007/s00603-012-0230-5
  8. Cnudde, V. and Boone, M.N., 2013, High-resolution X-ray Computed Tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews. 123, 1-17. https://doi.org/10.1016/j.earscirev.2013.04.003
  9. Ceryan, N., Okkan, U., Kesimal, A., 2013, Prediction of unconfinjed compressive strength of carbonate rocks using artificial neural networks, Environmental Earth Sciences, 68, 807-819. https://doi.org/10.1007/s12665-012-1783-z
  10. Gokceoglu, C, Zorlu, K, 2004, A fuzzy model to predict the unconfined compressive strength and modulus of elasticity of a problematic rock, Eng Appl Artif Intell, 17, 61-72. https://doi.org/10.1016/j.engappai.2003.11.006
  11. Hassani, F.P., Scoble, M.J., Whittaker, B.N., 1980, Application of point load index test to strength determination of rock and proposals for new size-correction chart, In: Summers DA (ed) Proceedings of the 21st US symposium on rock mechanics, University of Missouri Press, Rolla, 543-564.
  12. Jeong, Y.J., Yun, T.S., Kim, K.Y., Choo, J., 2011, Image Calibration Techniques for Removing Cupping and Ring Artifacts in X-ray Micro-CT Images, Journal of the Korean geotechnical society, 27(11), 93-101. https://doi.org/10.7843/kgs.2011.27.11.093
  13. Kahraman, S., 2001, Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci, 38, 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9
  14. Karakul, H and Ulusay, R., 2013, Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng, 46, 981-999. https://doi.org/10.1007/s00603-012-0353-8
  15. Semnani, S.J., Borja, R.I., 2017, Quantifying the heterogeneity of shale through statistical combination of imaging across scales, Acta Geotechnica, DOI 10.1007/s11440-017-0576-7.
  16. Schon, J, 2011, Physical Properties of rocks, vol 8. Handbook of petroleum exploration and production. Elsevier, Oxfordm UK.
  17. Singh, T.N., Kainthola, A, Venkatesh, A, 2012, A Correlation between point load index and uniaxial compressive strength for different rock types, Rock Mech Rock Eng, 45, 259-264. https://doi.org/10.1007/s00603-011-0192-z
  18. Torquato, S,, Beasley, J.D., Chlew, Y.C., 1988, Two-point cluster function for continuum percolation, J. Chem. Phys., 88(10), 6540-6547. https://doi.org/10.1063/1.454440
  19. Yun, T.S., Jeong, Y.J., Kim, K.., and Min, K-B, 2013, Evaluation of rock anisotropy using 3D X-ray computed tomography, Engineering Geolgoy, 163, 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017