References
- O. AbuGhneim, B. Al-Khamaiseh, and H. Al-Ezeh, The geodetic, hull, and Steiner numbers of powers of paths, Util. Math. 95 (2014), 289-294.
- J. Bermond, F. Cormellas, and D. F. Hsu, Distributed loop computer networks: a survey, J. Parallel Distributed Computing 24 (1995), 2-10. https://doi.org/10.1006/jpdc.1995.1002
- J. Caceresa, C. Hernandob, M. Morab, I. M. Pelayob, and M. L. Puertasa, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010), no. 11, 3002-3031.
- S. R. Canoy, G. B. Cagaanan, and S. V. Gervacio, Convexity, geodetic and hull numbers of the join of graphs, Utilitas Math. 71 (2006), 143-159.
- G. Chartrand, J. F. Fink, and P. Zhang, Convexity in oriented graphs, Discrete Appl. Math. 116 (2002), 115-126. https://doi.org/10.1016/S0166-218X(00)00382-6
- G. Chartrand, J. F. Fink, and P. Zhang, The hull number of an oriented graph, International J. Math. Math. Sci. 36 (2003), 2265-2275.
- M. C. Dourado, J. G. Gimbel, J. Kratochvil, F. Protti, and J. L. Szwarcter, On the computation of the hull number of a graph, Discrete Math. 309 (2009), no. 18, 5668- 5674. https://doi.org/10.1016/j.disc.2008.04.020
- M. G. Everett and S. B. Seidman, The hull number of a graph, Discrete Math. 57 (1985), no. 3, 217-223. https://doi.org/10.1016/0012-365X(85)90174-8
- M. Farber and R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986), no. 3, 433-444. https://doi.org/10.1137/0607049
- D. E. Knuth, The Art of Computer Programming. Vol. 3, Addison-Wesley, Reading, MA, 1975.