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THE HULL NUMBER OF POWERS OF CYCLES

HAsAN AL-EzEH, MANAL GHANEM, AND JAMEEL RWALAH

ABSTRACT. Let C) be the cycle graph of order n on the vertices vg,
V1, ..., Up and Cﬁ be the k-th power of Cj,. In this article we determine
the hull-number of C¥.

1. Introduction

Given a finite simple connected graph G, let u and v be two vertices of G.
The distance between u and v is the length of a shortest path between u and
v, we denote it by dg(u,v). A shortest path between u and v is called a u — v
geodesic. The set of all vertices in G that lie on a u — v geodesic is denoted
by I[u,v]. The closed interval Ifu,v] consists of all vertices that lie on a uv
geodesic of G. For A C V(G), let the closed interval I[A] be the union of all sets
Ifu,v] for u,v € A, then A is called a convex set if I[A] = A. The convex hull
of A, denoted by [A4], is the smallest convex set containing A. If [4] = V(G),
then A is called a hull set of G. The cardinality of a minimum hull set of G is
called the hull number of G, and it is denoted by h(G). If I[A] = V(G), then
A is called a geodetic set of G. The minimum cardinality of a geodetic set in
G is named the geodetic number of G and it is denoted by g(G). Certainly,
hG) < g(G).

The process of rebuilding a network modelled by a connected graph is a
discrete optimization problem, consisting in finding a subset of vertices of car-
dinality as small as possible, which would allow us to store and retrieve the
whole graph. One way to approach this problem is by using a certain convex
operator. This procedure has attracted much attention since it was shown in
[9] that every convex subset in a graph is the convex hull of its extreme ver-
tices if and only if the graph is chordal and contains no induced 3-fan. The hull
number of a graph was introduced by [8]. They characterized graphs having
some particular hull numbers and they obtained a number of bounds for the
hull numbers of graphs. Dourado et al. [7] proved that the hull number of
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unit interval graphs, cographs and split graphs can be computed in polynomial
time. The hull number of an oriented graph was studied in [5] and [6]. The hull
number of the power of paths was determined in [1]. For more results on the
subject, see [3], [4] and [5]. For any positive integer & and a connected graph
G the k-th power graph G* of G has V(G*) = V(G) and the distinct vertices =
and y are adjacent in G* if d(x,y) < k. Circulant graphs have been extensively
studied and have a vast number of applications to multicomputer networks and
distributed computation (see [2] and [10]). One type of the circulant graphs
is the k-th power of the n-cycle C¥. Our aim in this paper is to find the hull
number of the graph CF.

2. The hull number of C’Z

For positive integers n and k, we denote by CX the graph with vertex set
{vo,v1,...,up—1} and edge set {v;v; : i —j = £m mod n,1 < m < k}. The
graph CF is the k-th power of the n-cycle C,,.

In this section, we will determine the hull number of the k-th power of the
n-cycle C*. The hull number of a connected graph G of order n is n if and only
if G is the complete graph of order n, [8]. It is clear that C* is the complete
graph of order n when £ > | %] and hence its hull number equal n. So next we
will only consider C% when 1 < k < | %].

Let G be a graph. Given a vertex v, denote by N(v) the set of neighbors of
v. And denote, the subgraph of G induced by the set B, B C V(G) by G[B].
We say that v is a simplicial vertex of G if N(v) induces a complete subgraph.
It is clear that every hull set of a graph G contains the set of all simplicial
vertices of G. In this section, we characterize the hull number of the graph C*
in the following sequences of lemmas.

First, we start by the following lemma that determines the geodetic number

of the k-th power of a path with gk + 2 vertices.

Lemma 1 ([1]). Let P41 be the path of order n+1 and P%, | be the k-th power
of Pp11. Suppose that n = gk 4+ r where q is a positive integer and 0 < r < k,
then g(PﬁH) =2 4f and only if n = gk + 1.

In the following lemma, we show that 3 is an upper bound for h(CE).
Lemma 2. The hull number of any power of cycle graph is at most 3.

Proof. Let C¥ be the k-th power of the cycle graph with n vertices. Then there
are two cases of n.

Case 1: n is even. Use division algorithm, to write n = 2qgk+2r, where ¢ is a
positive integer, 0 < 2r < 2k, and V(CF) = {vo, 1, ..., Uky ..., Ughy - - - s Ughrs
e Ugkg2rs -+ -y U(qb ) k2 - - - > U(2g—1)k+2rs - - s U2qk+2r—1}. Now, assume that
the hull number of C¥ is not equal 2 and let A = {vg, V1, Vgk+r}, We claim
that A is a hull-set of C¥. To show this, first note that {vo,vgrs+,} C A
gives Ay = {vo, Uk, U2k, - - - Ugk, Ugk4r } a0d Ao = {Ugk4r, Ugkt2r, U(g+1) k421 - - -
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U(2g—1)k+2r, Vo } are subsets of [A], since their elements lie on geodesics be-
tween vg and vgk+r. And observe that, {v1,vVgk, Vgk+2rt € [A] and the in-
duced subgraph of C,’i with the set of vertices As = {v1,vo, Vaght2r—1,---,
U(q4+1)k+2rs - - - » Ugkt2r } 18 isomorphic to PF |, where m = gk +1. Use Lemma
1, to get Az C [A]. Therefore, vogryor—1 € [A]. Take Ay = {vagrt2r—1,v0, - - -,
Uk, - -+, Ugk}, then CF[A4] = PP o, and hence Ay C [A]. Moreover,

As = {U(q+1)k+r+1a U(g4+1)k+ry - -+ Ugk+2r; - - - 7qu+r} C [A] and
Ae = {Vgktrs Vgktr—1s - -+ Ughs - - - V(g—1)ktrs Vg—Dk+r—1 S [A];
since {V(g 4 1)ktri1s Vahtrs Vig-1ktr—1} C [A] and CF[A;] = P, for i = 5,6.

So, V(CF) = U?Zl A; = [A] and hence A is a hull set of C¥.
Case 2: n is odd. By division algorithm n — 1 = 2¢k + 2r, where ¢

is a positive integer, 0 < 2r < 2k and V(CF) = {vo,v1,..., Uk, -+, Vgks
<oy Ugktry - ooy Ugk+2r+1 -+ 5 U(gd1)k42r+15 -+ -5 U(2g—1)k+2r415 -+ - = U2qk+27‘}~ If
r = 0, then A = {vo,V(g—1)k, Vgk+1} is a hull set of Ck. To show this set
Ay = {Vg=1)k> V(g=1)k+1s - Vght1}, Az = {vo,v1,. ., 0g—1)kt1}, Az =
{Ugk+1, V(g1 k15 - - V2g—1)k+1, V0 }> As = {Ugks Vgkt1, -+ - Vgr)kt1)s As =
{V(g+1) k415 - -+ V(2g=1)k+15 - - - » V0, V1 }. By using Lemma 1 and noting that all

vertices of Az lie on a vy — vgr41 geodesic, we can prove respectively that
A; C [A] for all i. Hence, V(C*) = U2_,A; = [A] and thus h(CK) = 3.
Now, suppose that r # 0. We claim that A = {vg, v1, Vgk+r} is a hull set
of C*, to prove this claim we mimic the proof of Case 1. First, observe
that, there are two paths between vy and vgg4,, the first one is vo — v1 —

S — U — = Ugk — - — Ugk+r and the second is vgp4r— -0 — Ugktor+1—
S = Ut k42r41 —  — U(2g—1)k+42r+1 — * - — Vo. Since the length of the first
path is gk + r and the length of the second path is ¢k +r + 1 and r + 1 < k,
we have vg — vk — +++ — Ugk — Ugk+r and Ugktr — Ugk+2r+1— U(q41)k+2r4+1 —
© = V(2g—1)k+2r4+1 — Vo are geodesics between vy and vgry,. Thus, Ay =

{UOa Uk - -y Ugks Ugk+rs Ugk+2r+15 U(q+1)k+2r+15 - -+ - 7U(2q—1)k+2r+1} c [A] NOWa
take

Az = {qu+2r+1, Ugk+2r+25 - -+ U(g+1)k4+r+15 - - - s U2gk+2r, V0O, U1},

AS = {U2qk+2r7U07 sy Uk e vy qu}v

A4 = {qu+r7 Uqk+r+1y -+ - Ugk+2ry-- - U(q+1)k+ra U(q+1)k+r+1}7

As = {V(g=1)k+4r—15V(g—1)k+rs - - - Ugks Ugk-+15 - - s Ughtr } -

Then CE[A;] = Pk, for i = 2,3 and CE[A;] = P}, for i = 4,5. By Lemma

1, we get (J7_, A; C [A]. So, V(C¥) = [A] and hence A is a hull set of C%. [
In the following lemma, we show that 3 is a sharp upper bound of C¥.

Lemma 3. Suppose that n = 2qk where q is a positive integer, then h(CF) = 3.

Proof. Suppose that A = {vg,vg,}, we will show that A is not a hull set of
CF. Observe that, there are exactly two vy — vgk geodesics, the first one is
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Vo — Vg — - - — Ugg and the second is Vg — V(g 1)k — V(g+2)k — " — V(2g—1)k — V0-
So, [A] # V(CF) and hence A is not a hull set of C*. Similarly, if we replace
vgk in A by any other vertex of C¥ we can easily show that A is not a hull set.
So h(C%) > 2. By Lemma 2, we get the result. O

Lemma 4 ([1]). Suppose that n = gk + r where 0 < r < k, then

2, ifg>1,r#k;
h(Py) =9 3, ifa=1r#1
2, ifgq=1,r=1.

Lemma 5. Suppose that n = 2qk + 2r where q is a positive integer and 0 <
r <k, then h(Ck) = 2.

Proof. Let
Ay ={vo,v1,...,Vk, ..., Ugks- - -, Ugktr} and
Ay = {qu+r, <oy Ugk+2ry - - -5 V(g1 k4215 - - - U2gk+2r—1, Uo}-

Then CF[A;] = Pfk+7,+1 for i = 1,2. By using Lemma 4, we have the following
three cases:

Case 1: ¢ =1 and r = 1. Since vy and v, are simplicial vertices of C¥[A;],
the hull set of CX[A;] is A = {vo, vgr4r} for i = 1,2. But A; U Ay = V(CF), so
A is a hull set of CF.

Case 2: ¢ > 1 and r # k, then the hull set of CX[A;] is A = {vo, vgkr} for
i=1,2. Thus A is a hull set of C*.

Case 3: ¢ = 1 and r # 1. Then the hull number h(CX[4;]) = 3 for i = 1,2.
In this case, A = {vg,vr4,} is a hull set of C¥. To show this, observe that
Vo — Vg — Uggr and Uiy — Ugktr — Vg are vy — Uiy, geodesics. Therefore,
{voksr, v} C [A]. Since r < k, the path vopi, — v; — U 1S & Vopr — Vg
geodesic. So, vy belongs to [A] and hence {vg, v1,Vg4r} C [A]. By using the
proof of Lemma 2, we have A is a hull set of C¥. ([

Lemma 6. Suppose that n—1 = 2qk where q is a positive integer, then h(C*) =
3.

Proof. Assume that n — 1 = 2¢gk, where ¢ is a positive integer, that means the
number of the vertices of the graph CF is odd. Set A = {vg,v4}. Clearly,

there exists unique vy — vgi geodesic which is vg — v — -+ —vgi. So, A is not
a hull set of Ck. Similarly, if we replace v, by any other vertex, we get the
same result. By Lemma 2, we conclude that h(Ck) = 3. O

Lemma 7. Suppose that n — 1 = 2qk + 2r where q is a positive integer and
0 <7 <k, then h(Ck) = 2.

Proof. Let A = {vg,Vgk+r}. Then A is a hull set of CE. To show this it
is enough to show that v; belongs to [A] (see the proof of Lemma 2). Since
Vo — Uk — Uk4r — U2k4r — = Ugk4r, V0 — Ur — U4y — V2k4r — *° — Ugk+r
and vy — V(2q—1)k+2r+1 — Y(2¢g—2)k+2r+1 — * " = Ugk+2r+1 — Ugk+r are Vg —
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Ugk+r geodesics, we have {v(2g—1)pt2r+1,Ur, Uk} C [A]. But vigg_1yktort1 —
Vagk+2or — Ur 18 @ U(2q—1)k+2r+1 — Ur geodesic, S0 Vogkior € [A]. Now, let
B = {vagkt2r, V0, - - -, Uk}, then CE[B] = Pf ,. By Lemma 1, we get vy € [4]
and hence the result holds. [l

We can summarize the above in the following theorem.

Theorem 8. Ifn = 2qk + 2r or n — 1 = 2qk + 2r where q is a positive integer
and 0 < r < k, then

2, if 0<r<k;
h(Cﬁ):{& z? r=0.

For interested readers one might try to find the hull number of some other
types of circulant graphs.
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