DOI QR코드

DOI QR Code

Investigation of Measurement Feasibility of Large-size Wastes Based on Unmanned Aerial System

UAS 기반 대형 폐기물 발생량 측정 가능성 모색

  • Son, Seung Woo (Korea Environmental Information Center, Korea Environment Institute) ;
  • Yu, Jae Jin (Korea Environmental Information Center, Korea Environment Institute) ;
  • Jeon, Hyung Jin (Korea Environmental Information Center, Korea Environment Institute) ;
  • Lim, Seong Ha (Spatial Information Business Dept, Korea Land and Geospatial Informatix Corporation) ;
  • Kang, Young Eun (Industry-Academia Collaboration Foundation, Dong-A University) ;
  • Yoon, Jeong Ho (Korea Environmental Information Center, Korea Environment Institute)
  • 손승우 (한국환경정책.평가연구원 국토환경정보센터) ;
  • 유재진 (한국환경정책.평가연구원 국토환경정보센터) ;
  • 전형진 (한국환경정책.평가연구원 국토환경정보센터) ;
  • 임성하 (한국국토정보공사 공간정보사업실) ;
  • 강영은 (동아대학교 산학협력단) ;
  • 윤정호 (한국환경정책.평가연구원 국토환경정보센터)
  • Received : 2017.07.31
  • Accepted : 2017.10.10
  • Published : 2017.10.30

Abstract

Efficient management of large-size wastes generated from disasters etc. is always in demand. Large-size wastes are closely connected to the environment, producing adverse effects on the air quality, water quality, living environment and so on. When large-size wastes are generated, we must be able to estimate the generated amount in order to transfer them to a temporary trans-shipment site, or to properly treat them. Currently, we estimate the amount of generated large-size wastes by using satellite images or unit measure for wastes; however, the accuracy of such estimations have been constantly questioned. Therefore, the present study was performed to establish three-dimensional spatial information based on UAS, to measure the amount of waste, and to evaluate the accuracy of the measurement. A measurement was made at a waste site by using UAS, and the X, Y, Z RMSE values of the three-dimensional spatial information were found to be 0.022 m, 0.023 m, and 0.14 m, all of which show relatively high accuracy. The amount of waste measured using these values was computed to be approximately $4,273,400m^3$. In addition, the amount of waste at the same site was measured by using Terrestrial LiDAR, which is used for the precise measurement of geographical features, cultural properties and the like. The resulting value was $4,274,188m^3$, which is not significantly different from the amount of waste computed by using UAS. Thus, the possibility of measuring the amount of waste using UAS was confirmed, and UAS-based measurement is believed to be useful for environmental control with respect to disaster wastes, large-size wastes, and the like.

재난 등에서 발생하는 대형 폐기물에 대한 효율적인 관리가 지속적으로 요구되고 있다. 대형 폐기물은 환경과 밀접하게 연결되어 대기질이나 수질, 생활 환경 등에 악영향을 미치고 있다. 대형 폐기물이 발생하면 임시적환장으로의 이동이나 처리 등을 위해서 발생량을 추정할 수 있어야 한다. 현재까지 위성영상이나 폐기물의 원단위를 이용하여 발생량을 추정하고 있지만 그 정확성에 대한 의문이 지속적으로 제기되는 실정이다. 따라서 본 연구에서는 UAS를 기반으로 3차원 공간정보를 구축하고 폐기물 측정 및 정확도 평가를 목적으로 연구를 진행하였다. UAS를 이용하여 폐기물 지역을 측정한 결과, 3차원 공간정보의 X, Y, Z RMSE 수치는 각각 0.022 m, 0.023 m, 0.14 m로 비교적 높은 정확도를 보였다. 이를 기반으로 측정한 폐기물량은 약 $4,273,400m^3$로 도출되었다. 또한 과거부터 지형, 문화재 등 정밀한 측량에 사용된 지상 LiDAR를 이용하여 동일지역의 폐기물량을 측정하였으며 그 결과값은 약 $4,274,188m^3$로 도출되었다. UAS 기반으로 도출한 폐기물량과 크게 차이를 보이지 않았다. 이를 통해 UAS를 이용한 폐기물 발생량 측정에 대한 가능성을 확인할 수 있었으며 이는, 재해 폐기물이나 대형 폐기물 등의 환경관리에 유용하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Aguera-Vega, F., F. Carvajal-Ramirez, and P. Martinez-Carricondo, 2017. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle, Measurement, 98: 221-227. https://doi.org/10.1016/j.measurement.2016.12.002
  2. Asari, M., S. Sakai, T. Yoshioka, Y. Tojo, T. Tasaki, H. Takigami, and K. Watanabe, 2013. Strategy for separation and treatment of disaster waste: a manual for earthquake and tsunami disaster waste management in Japan, Journal of Material Cycles and Waste Management, 15(3): 290-299. https://doi.org/10.1007/s10163-013-0154-5
  3. Brown, C., M. Milke, and E. Seville, 2011. Disaster waste management: A review article, Waste Management, 31(6): 1085-1098. https://doi.org/10.1016/j.wasman.2011.01.027
  4. Chen, J.R., H.Y. Tsai, P.C. Hsu, and C.C. Shen, 2007. Estimation of waste generation from floods, Waste Management, 27(12): 1717-1724. https://doi.org/10.1016/j.wasman.2006.10.015
  5. Coveney, S. and K. Roberts, 2017. Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling, International Journal of Remote Sensing, 38(8-10): 3159-3180. https://doi.org/10.1080/01431161.2017.1292074
  6. Coveney, S., A.S. Fotheringham, M. Charlton, and T. McCarthy, 2010. Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS, Computers & Geosciences, 36(4): 489-499. https://doi.org/10.1016/j.cageo.2009.10.003
  7. Cote J.F., R.A. Fournier, and R. Egli, 2011. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR, Environmental Modelling & Software, 26(6): 761-777. https://doi.org/10.1016/j.envsoft.2010.12.008
  8. Dijkstra, J.J., H.A. Sloot, and R.N.J. Comans, 2002. Process identification and model development of contaminant transport in MSWI bottom ash, Waste Management, 22(5): 531-541. https://doi.org/10.1016/S0956-053X(01)00034-4
  9. Hancock, S., K. Anderson, M. Disney, and K.J. Gaston, 2017. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar, Remote Sensing of Environment, 188: 37-50. https://doi.org/10.1016/j.rse.2016.10.041
  10. Hu, Z.H. and J.B. Sheu, 2013. Post-disaster debris reverse logistics management under psychological cost minimization, Transportation Research Part B, 55: 118-141. https://doi.org/10.1016/j.trb.2013.05.010
  11. Jo, J.H., T.-H. Kim, S.-R. Lee, J.-E. Lee, T.-H. Kim, and S.-H. Jung, 2016. Optimal Management of Disaster Waste by its Properties Using GIS. Korea Environment Institute Report (in Korean with English abstract).
  12. Lee, D.S. and S.-E. Hong, 2012. An Analysis on the Accuracy of Terrestrial Laser Surveying for Building 3D Cadastre, Journal of the Korean Society of Cadastre, 6(1): 75-89 (in Korean with English abstract).
  13. Lee, K.W., H.-W. Son, and D.-I. Kim, 2016. Drone RemoteSensing Photogrammetry, Seoul: Goomibook.
  14. Lee, Y.C., 2015. Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery, Journal of the Korean Society for Geospatial Information Science, 23(2): 39-48 (in Korean with English abstract). https://doi.org/10.7319/kogsis.2015.23.2.039
  15. Mesas-Carrascosa, F.J., M.D.N. Garcia, J.E.M. Larriva, and A. Garcia-Ferrer, 2016. An Analysis of the Influence of Flighy Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas, Sensors, 16(11): 1838. https://doi.org/10.3390/s16111838
  16. McLoughlin, D., 1985. A framework for integrated emergency management, Public Administration Review, 45: 165-172. https://doi.org/10.2307/3135011
  17. Petak, W.J., 1985. Emergency management: A challenge for public administration, Public Administration Review, 45: 3-7. https://doi.org/10.2307/3134992
  18. Reinhart, D.R. and P.T. Mccreanor, 1999. Disaster debris management-Planning Tools. US Environmental Protection Agency Report.
  19. Son, S.W., J.-H. Yoon, J.-H. Jo, T.-H. Kim, and H.-J. Jeon, 2016. Analysis of Disaster Response Technologies that Use Drones and Trend of Research. Korea Environment Institute Report (in Korean with English abstract).
  20. Uysal, M., A.S. Toprak, and N. Polat, 2015. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill, Measurement, 73: 539-543. https://doi.org/10.1016/j.measurement.2015.06.010
  21. Yoo, I.S., 2015. Disaster Planning in Korea, Hanyang Med Rev, 35(3): 157-173 (in Korean with English abstract). https://doi.org/10.7599/hmr.2015.35.3.157
  22. Yoo, Y.H., J.-W. Choi, S.-K. Choi, S.-K., and S.-H. Jung, 2016. Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs, Journal of the Korean Society for Geospatial Information Science, 24(3): 3-9 (in Korean with English abstract). https://doi.org/10.7319/kogsis.2016.24.3.003
  23. Yu, J.J., H.-S. Park, Y.-J. Yang, and D.-H. Jang, 2016. Assessing the Applicability of UAS for Detecting Geomorphological Changes in Coastal Areas: A Case Study in the Baramarae Beach in Anmyeondo, Journal of the Korean Geomorphological Association, 23(4): 113-126 (in Korean with English abstract). https://doi.org/10.16968/JKGA.23.4.113
  24. Zhu, X., T. Wang, A.K. Skidmore, R. Darvishzadeh, K.O. Niemann, and J. Liu, 2017. Canopy leaf water content estimated using terrestrial LiDAR, Agricultural and Forest Meteorology, 232: 152-162. https://doi.org/10.1016/j.agrformet.2016.08.016