DOI QR코드

DOI QR Code

Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do

울릉도 거북바위 조수웅덩이에서 분리된 해양 미세조류 옥세노클로렐라 프로토테코이드 균주의 기술 및 응용

  • Jang, Hyeong Seok (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Kang, Nam Seon (Marine Life-resources Management Department, National Marine Biodiversity Institute of Korea) ;
  • Kim, Kyeong Mi (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Jeon, Byung Hee (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Park, Joon Sang (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Hong, Ji Won (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
  • 장형석 (국립해양생물자원관 분류연구실) ;
  • 강남선 (국립해양생물자원관 해양생명자원관리부) ;
  • 김경미 (국립해양생물자원관 분류연구실) ;
  • 전병희 (국립해양생물자원관 분류연구실) ;
  • 박준상 (국립해양생물자원관 분류연구실) ;
  • 홍지원 (국립해양생물자원관 분류연구실)
  • Received : 2017.07.26
  • Accepted : 2017.09.09
  • Published : 2017.10.30

Abstract

A unicellular green alga was axenically isolated from a tidal pool on Ulleung-do, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Auxenochlorella protothecoides. The current study is the first record of this species in Korea. The microalgal strain was named as A. protothecoides MM0011 and its growth, lipid and pigment compositions, and biomass properties were investigated. The strain is able to thrive in a wide range of temperatures ($5{\sim}35^{\circ}C$) and to withstand up to 1.5 M NaCl. The results of GC/MS analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids (PUFAs). Its major fatty acids were linoleic acid (27.6%) and ${\alpha}-linolenic$ acid (39.6%). Thus, this indigenous microalga has potential as an alternative source of ${\omega}3$ and ${\omega}6$ PUFAs, which currently come from fish and plant oils. Also, the HPLC analysis revealed that the value-added antioxidant, lutein, was biosynthesized as the accessory pigments by the microalga. A proximate analysis showed that the volatile matter content was 85.6% and an ultimate analysis indicated that the gross calorific value was $20.3MJ\;kg^{-1}$. Since 40.5% of total nitrogen and 27.9% of total phosphorus were removed from the medium, respectively, it also has potential as a feedstock for biofuel applications which could be coupled to wastewater treatment. In addition, the biomass may also serve as an excellent animal feed because of its high protein content (51.4%). Therefore, A. protothecoides MM0011 shows promise for application in production of microalgae-based biochemicals and as a biomass feedstock.

단세포 녹조류 균주를 경상북도 울릉군 울릉도 거북바위 주변 조수웅덩이로부터 순수분리하여 형태적, 분자적, 및 생화학적 특성을 분석한 결과 옥세노클로렐라 프로토테코이드에 속하는 것으로 밝혀졌다. 본 종은 현재까지 한국에서 공식 기록이 없는 미기록종으로 옥세노클로렐라 프로토테코이드 MM0011 균주라고 명명하였으며, 생장, 지질/광합성 색소 조성 및 바이오매스 특성에 대해 조사를 실시하였다. 분리균주는 광범위한 온도($5-35^{\circ}C$)에서 생장할 수 있었으며 1.5 M 염화나트륨 농도까지 생존할 수 있었다. 가스크로마토그래프/질량분석기를 이용한 분석 결과, 본 균주에는 영양적으로 중요한 불포화지방산이 풍부한 것으로 나타났으며, 특히 리놀네산(27.6%) 및 알파 리놀렌산(37.2%)이 주요 지방산 성분으로 확인되었다. 따라서 본 토착 미세조류 균주는 어유 또는 식물성유를 대체할 수 있는 잠재적인 오메가-3 및 오메가-6 불포화지방산 원료가 될 수 있을 것으로 사료된다. 또한, 고부가가치 항산화 물질인 루테인이 보조색소로서 본 균주에 의해 생합성 되는 것으로 밝혀졌다. 일반성분분석 결과 MM0011 균주의 휘발성물질 함량은 85.6%였으며, 원소분석 결과 총 발열량은 $20.3MJ\;kg^{-1}$으로 나타났다. 또한 배지로부터 40.5%의 전질소와 27.9%의 전인을 각각 제거할 수 있어 향후 바이오연료 원료물질 생산과 오 폐수처리를 연계할 수 있는 가능성 역시 제시하였다. 추가적으로 MM0011 바이오매스는 높은 단백질 함량(51.4%)을 갖고 있어 우수한 동물사료의 원료가 될 수 있는 가능성도 보여주고 있다. 따라서, 본 균주는 미세조류 기반 생화학 물질 생산 및 바이오매스 원료로서 상업적인 이용 가능성이 높음을 시사한다.

Keywords

References

  1. Arrigo, K. R. 2005. Marine microorganisms and global nutrient cycles. Nature 437, 349-355. https://doi.org/10.1038/nature04159
  2. Ausich, R. L. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69, 2169-2173. https://doi.org/10.1351/pac199769102169
  3. Breuer, G., Evers, W. A. C., de Vree, J. H., Kleinegris, D. M. M., Martens, D. E., Wijffels, R. H. and Lamers, P. P. 2013 Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80, e50628.
  4. Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J. and Chang, J. S. 2017. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 229, 53-62. https://doi.org/10.1016/j.biortech.2017.01.006
  5. Ceron-Garcia, M. C., Macias-Sanchez M. D., Sanchez-Miron A., Garcia-Camacho F., Molina-Grima E. 2013. A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl. Energy 103, 341-349. https://doi.org/10.1016/j.apenergy.2012.09.054
  6. Cloern, J. E., Foster, S. Q. and Kleckner, A. E. 2014. Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11, 2477-2501. https://doi.org/10.5194/bg-11-2477-2014
  7. Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas-Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. and Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8, 190-209. https://doi.org/10.1111/1751-7915.12167
  8. Darienko, T. and Proschold, T. 2015. Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). J. Phycol. 51, 394-400. https://doi.org/10.1111/jpy.12279
  9. Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198. https://doi.org/10.1016/j.aca.2005.01.041
  10. Hu, B., Min, M., Zhou, W., Li, Y., Mohr, M., Cheng, Y., Lei, H., Liu, Y., Lin, X., Chen, P. and Ruan, R. 2012. Influence of exogenous $CO_2$ on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl. Biochem. Biotechnol. 166, 1661-1673. https://doi.org/10.1007/s12010-012-9566-2
  11. Hutchins, D. A., Mulholland, M. R. and Fu, F. 2009. Nutrient cycles and marine microbes in a $CO_2$-enriched ocean. Oceanography 22, 128-145.
  12. Kalina, T. and Puncocharova, M. 1987. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Algol. Stud. 45, 473-521.
  13. Krinsky, N. I., Landrum, J. T. and Bone, R. A. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23, 171-201. https://doi.org/10.1146/annurev.nutr.23.011702.073307
  14. Kruger, W. 1894. Kurze Charakteristik einiger niederer Organismen im Saftflusse der Laubbaume. Hedwigia 33, 241-66.
  15. Leu, S. and Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10, 169-183. https://doi.org/10.1089/ind.2013.0039
  16. Mehta, L. R., Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92.
  17. Miao, X. and Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  18. Min, M., Hu, B., Zhou, W., Li, Y., Chen, P. and Ruan, R. 2012. Mutual influence of light and $CO_2$ on carbon sequestration via cultivating mixotrophic alga Auxenochlorella protothecoides UMN280 in an organic carbon-rich wastewater. J. Appl. Phycol. 24, 1099-1105. https://doi.org/10.1007/s10811-011-9739-3
  19. Packaged Facts. 2012. The Global Market for EPA/DHA Omega-3 Products. Published online at: http://www.packagedfacts.com/Global-EPA-DHA-7145087/ (accessed on 26 July 2017).
  20. Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635-648. https://doi.org/10.1007/s00253-004-1647-x
  21. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
  22. Ross, A. B., Jones, J. M., Kubacki, M. L. and Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99, 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
  23. Sanchez, J. F., Fernandez, J. M., Acien, F. G., Rueda, A., Perez-Parra, J. and Molina, E. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43, 398-405. https://doi.org/10.1016/j.procbio.2008.01.004
  24. Sanz, N., Garcia-Blanco, A., Gavalas-Olea, A., Loures, P. and Garrido, J. L. 2015. Phytoplankton pigment biomarkers: HPLC separation using a pentafluorophenyloctadecyl silica column. Methods Ecol. Evol. 6, 1199-1209. https://doi.org/10.1111/2041-210X.12406
  25. Schirmer, A., Rude, M. A., Li, X., Popova, E. and Del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329, 559-562. https://doi.org/10.1126/science.1187936
  26. Shi, X. M., Liu, H. J., Zhang, X. W. and Chen, F. 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34, 341-347. https://doi.org/10.1016/S0032-9592(98)00101-0
  27. Shi, X. M. and Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 18, 723-727. https://doi.org/10.1021/bp0101987
  28. Shihira, I. and Krauss, R. W. 1965. Chlorella. Physiology and taxonomy of forty-one isolates, pp. 1-97. Maryland University of Maryland, College Park.
  29. Shinde, S. and Lele, S. S. 2010. Statistical media optimization for lutein production from microalgae Auxenochlorella protothecoides SAG 211-7A. Int. J. Adv. Biotechnol. Res. 1, 104-114.
  30. Silva, P. C. (1996-to date). Index Nominum Algarum, University Herbarium, University of California, Berkeley http://ucjeps.berkeley.edu/INA.html.
  31. Sun, Z., Li, T., Zhou, Z. G. and Jiang, Y. 2015. Microalgae as a source of lutein: Chemistry, biosynthesis, and carotenogenesis. pp. 37-58. In: Posten, C. and Chen S. F. (eds.), Microalgae Biotechnology. Springer International Publishing AG: Cham, Switzerland.
  32. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96. https://doi.org/10.1263/jbb.101.87
  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  34. Wei, D., Chen, F., Chen, G., Zhang, X., Liu, L. and Zhang, H. 2008. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci. China C. Life Sci. 51, 1088-1093. https://doi.org/10.1007/s11427-008-0145-2
  35. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press: San Diego, CA, USA.
  36. Vachali, P., Bhosale, P. and Bernstein, P. S. 2012. Microbial carotenoids. pp. 41-59. In: Barredo, J. (ed.), Microbial Carotenoids from Fungi: Methods and Protocols. Springer International Publishing AG: Cham, Switzerland.
  37. Verbruggen, H., Ashworth, M., LoDuca, S. T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F. W., Littler, D. S., Littler, M. M., Leliaert, F. and DeClecrk, O. 2009. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol. Phylogenet. Evol. 50, 642-653. https://doi.org/10.1016/j.ympev.2008.12.018
  38. Xiao, Y., Lu, Y., Dai, J. and Wu, Q. 2015. Industrial fermentation of Auxenochlorella protothecoides for production of biodiesel and its application in vehicle diesel engines. Front. Bioeng. Biotechnol. 3, 164
  39. Xiong, W., Li, X., Xiang, J. and Wu, Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl. Microbiol. Biotechnol. 78, 29-36. https://doi.org/10.1007/s00253-007-1285-1
  40. Zapata, M. and Garrido, J. L. 1991. Influence of injection conditions in reversed-phase high-performance liquid of chromatography of chlorophylls and carotenoids. Chromatographia 31, 589-594. https://doi.org/10.1007/BF02279480
  41. Zapata, M., Rodriguez, F. and Garrido, J .L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29-45. https://doi.org/10.3354/meps195029
  42. Zhou, W., Li, Y., Min, M., Hu, B., Chen, P. and Ruan, R. 2011. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol. 102, 6909-6919. https://doi.org/10.1016/j.biortech.2011.04.038
  43. Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P. and Ruan, R. 2012. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour. Technol. 110, 448-455. https://doi.org/10.1016/j.biortech.2012.01.063