DOI QR코드

DOI QR Code

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan

괴산 성도 연-아연 광상의 산출광물과 생성환경

  • Ahn, Seongyeol (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
  • 안성열 (공주대학교 지질환경과학과) ;
  • 신동복 (공주대학교 지질환경과학과)
  • Received : 2017.07.27
  • Accepted : 2017.09.04
  • Published : 2017.10.28

Abstract

The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.

성도 연-아연광상은 옥천층군 화전리층의 석회암을 교대한 스카른광체와 모암내 열극을 충진한 열수맥상광체로 구분된다. 스카른광물은 헤덴버자이트(hedenbergite) 계열의 휘석이 대부분이며, 그로슐라(grossular)와 안드라다이트(andradite)가 진동누대구조를 보이는 석류석, 그리고 소량의 규회석, 투각섬석, 녹염석 등이 산출되어 환원환경에서 정출된 것으로 보인다. 스카른광체에서는 섬아연석 및 방연석이 우세하고 황철석, 자류철석, 황동석이 소량 수반되며, 열수맥상광체에서는 유비철석, 섬아연석, 황동석 및 황철석과 더불어 방연석, 자연비스무스 및 황석석(stannite)이 소량 수반된다. 스카른광체에서 암회색 섬아연석의 FeS 함량은 평균 17.4 mole%, 적갈색 섬아연석은 3.6 mole%이고, 열수맥상광체에서는 10.3 mole%를 나타낸다. 이들을 국내 주요 금속광상의 FeS-MnS-CdS 함량비와 비교한 결과 스카른광체는 연-아연, 열수맥상광체는 금-은 광상 영역에 도시된다. 열수맥상광체에서 산출되는 유비철석의 As 함량은 초기 31.93~33.00 at.%에서 중기 29.58~30.21 at.%로 가면서 점차 감소하며, 이에 따른 광화온도와 황분압은 초기 $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm.$와 중기 $330{\sim}364^{\circ}C$, <$10^{-8}atm.$에 해당한다. 섬아연석과 공생하는 황석석의 Fe와 Zn 조성비를 이용한 광물상 평형온도는 $236{\sim}254^{\circ}C$의 범위를 보인다. 스카른광체 황화광물의 황동위원소 조성은 5.4~7.2‰, 열수맥상광체는 5.4~8.4‰로서 화성기원과 유사하거나 다소 높은 값을 나타내어 광상을 형성시킨 황이 대체로 마그마에서 유래되었으나 일부 모암의 영향을 받았음을 시사한다. 그러나, 스카른광체와 열수맥상광체에서의 황동위원소평형온도가 각각 $549^{\circ}C$$487^{\circ}C$로서 상평형온도 보다 현저히 높게 나타나고 있어서 이들이 동위원소적으로 충분한 평형을 이루지 못한 것으로 추정된다.

Keywords

References

  1. Bae, Y.B. (1992) A study on the Bug-ap orebody in the Shinyemi mine. Jour. Korean Earth Sci. Soc., v.13, p.127-135.
  2. Barton, P.B. and Bethke, P.M., Jr. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral., v.72, p.451-467.
  3. Bjorn, J., Roy, A.W. and Donal, G.F. (1993) Zonation patterns of skarn garnets: Records of hydrothermal system evolution. Geology, v.21, p.113-116. https://doi.org/10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2
  4. Chakrabarti, A.K. (1967) On the trace element geochemistry of Zawar sulphides and its relation to metallogenesis. Can. Mineral., v.9, p.258-262.
  5. Choi, B.K., Choi, S.G., Seo, J.U., Yoo, I.K., Kang, H.S. and Koo, M.H. (2010) Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit: their genetic implications. Econ. Environ. Geol., v.43, p.477-490.
  6. Choi, J.B. and Kim, S.J. (1991) Mineralogy and iron chemistry of garnets and clinopyroxenes in the skarn deposits, the Hambaek geosyncline belt, Korea. Jour. Miner. Soc. Korea, v.4, p.119-128.
  7. Choi, S.G. (1993) Compositional variations of sphalerite and their genetic characteristics from gold and/or silver deposits in Central Korea. Jour. Korean Inst. Mining Geol., v.26, p.135-144.
  8. Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Environ. Geol., v.29, p.1-9.
  9. Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. Environ. Geol., v.37, p.1-19.
  10. Chon, H.T. and Shimazaki, H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Jour. Korean Inst. Mining Geol., v.19, p.139-149.
  11. Cook, N.j., Ciobanue, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochim. Cosmochim. Acta., v.73, p.4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
  12. Craig, J.R., Ljokjell, P. and Vokes, F.M. (1984) Sphalerite compositional variations in sulfide ores of the Norwegian Caledonides. Econ. Geol., v.79, p.1727-1735. https://doi.org/10.2113/gsecongeo.79.7.1727
  13. Faure, G. (1986) Principles of isotope geology. 2nd ed., John Wiley & Sons, 589p.
  14. Gottesmann, W., Gottesmann, B. and Seifert, W. (2009) Sphalerite composition and ore genesis at the Tumurtijnovoo Fe-Mn-Zn skarn deposit, Mongolia. N. Jb. Miner. Abh., v.185, p.249-280. https://doi.org/10.1127/0077-7757/2009/0123
  15. Im, H.K., Shin, D.B. and Heo, S.H. (2014) Occurrence and geochemical characteristics of the Haenam Pb-Zn skarn deposit. Econ. Environ Geol., v.47, p.363-379. https://doi.org/10.9719/EEG.2014.47.4.363
  16. Ishihara, S., Jin, M.S. and Kajiwara, Y. (2002) Sulfur content and isotopic ratio of Cambro-Ordovician carbonate rocks from South Korea: a possible source for Mesozoic magmatic-hydrothermal ore sulfur. Resource Geol., v.52, p.41-48. https://doi.org/10.1111/j.1751-3928.2002.tb00115.x
  17. KIGAM(Korea Institute of Geoscience and Mineral Resources)(2016) Geology and ore deposit survey, and origin study for securing potential orebody in the Taebaegsan metallogenic belt. KIGAM report, GP2015-032-2016(2), 250p.
  18. Kim, K.H. and Nakai, N. (1980) Sulfur isotope composition and isotopic temperatures of some base metal ore deposits, South Korea. Jour. Geol. Soc. Korea, v.16, p.124-134.
  19. Kim, K.H. and Nakai, N. (1982) Sulfur isotope composition and isotopic temperatures of the Shinyemi lead and zinc ore deposits, western Taebaegsan metallogenic belt, Korea. Jour. Korean Inst. Mining Geol., v.15, p.155-166.
  20. Kim, K.H., Nakai, N. and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Jour. Korean Inst. Mining Geol., v.14, p.167-182.
  21. Kim, K.H. and Shin, J.S. (1987) Stable isotope and fluid inclusion studies of the Manjang copper mine, South Korea. Jour. Korean Inst. Mining Geol., v.20, p.169-177.
  22. KORES(Korea Resources Corporation)(1990) Ore deposit of South Korea. v.12, p.144-145.
  23. KORES(Korea Resources Corporation)(2013) Bulletin of mining 2012. 551p.
  24. Kretschmar, U. and Scott S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Mineral., v.14, p.364-386.
  25. Kwak, J.Y., Kang, C.W., Joo, S.Y., Jeong, J.H. and Choi, J.B. (2015) Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area. Jour. Miner. Soc. Korea, v.28, p.279-292. https://doi.org/10.9727/jmsk.2015.28.3.279
  26. Lee, C.H., Lee, H.K. and Kim, S.J. (1998) Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineral. Deposita, v.33, p.379-390. https://doi.org/10.1007/s001260050156
  27. Lee, H.K., Yoo, B.C. and Kim, S.J. (1992) Mineralogy and ore genesis of the Daebong gold-silver deposits, Chungnam, Korea. Jour. Korean Inst. Mining Geol., v.25, p.297-316.
  28. Lee, J.H. and Kim, J.H. (1972) Geological map of Korea (1:50,000), Goesan sheet. Geological survey of Korea, v.27, 22p.
  29. Lee, M.S. (1985) Sulfur and carbon isotope studies of principal metallic deposits is the metallogenic province of the Taebaeg Mt. Region, Korea. Jour. Korean Inst. Mining Geol., v.18, p.247-251.
  30. Lee, S.G., Shin, S.C., Kim, K,H., Lee, T., Koh, H. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Res., v.17, p.87-101. https://doi.org/10.1016/j.gr.2009.04.012
  31. Lim, E.D., Yoo, B.C. and Shin, D.B. (2016) Skarnization and Fe mineralization at the Western orebody in the Manjang deposit, Goesan. Jour. Miner. Soc. Korea, v.29, p.141-153. https://doi.org/10.9727/jmsk.2016.29.3.141
  32. Lim, O., Yu, J.H., Koh, S.M. and Heo, C.H. (2013) Mineralogy and chemical compositions of Dangdu Pb-Zn deposit. Econ. Environ. Geol., v.46, p.123-140. https://doi.org/10.9719/EEG.2013.46.2.123
  33. Mariko, T. and Yang, D.Y. (1993) Magnesian skarn-type magnetite deposits of the Shinyemi mine, Korea. In: Maurice Y.N. (ed.) Proceeding of the 8th IAGOD Symposium, Ottawa, Canada. p.255-269.
  34. Meinert, L.D., Dipple, G.M. and Nicolescu, S. (2005) World skarn deposits. Econ. Geol. 100th anniversary volume, p.299-336.
  35. Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In: Tsusue, A. (ed.) Granitic provinces and associated ore deposits in South Korea, p.127-152.
  36. Na, C.K. (1994) Genesis of granitoid batholiths of Okchon Zone, Korea and its implications for crustal evolution. Ph. D. Thesis, Univ. Tsukuba, Japan.
  37. Nakamura, Y. and Shima, H. (1982) Fe and Zn partitioning between sphalerite and stannite. In: Joint Meeting of Soc. Mining Geol. Japan, Assoc. Miner. Petro., Econ. Geol. and Miner. Soc. Japan. Abstracts A-8.
  38. Newberry, R.J. (1991) Scheelite-bearing skarns in the Sierra Nevada region, California; Contrasts in zoning and mineral compositions and tests of infiltration metasomatism theory. In: Barto-Kyriakidis, A. (ed.), Skarns-their genesis and metallogeny: Athens, Greece. Theophrastus Publications S.A., p.343-384.
  39. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. John Wiley and Sons, p.509-567.
  40. Palero-Fernandez, F.J., and Martin-Izard, A. (2005) Trace element contents in galena and sphalerite from ore deposits of the Alcudia valley mineral field (Eastern Sierra Morena, Spain). Jour. Geochem. Exp., v.86, p.1-25. https://doi.org/10.1016/j.gexplo.2005.03.001
  41. Park, H.I., Woo, Y.K. and Hwang, J. (1988) Polymetallic mineralizatioin in the Eunchi silver mine. Jour. Geol. Soc. Korea, v.24, p.431-449.
  42. Petruk, W. (1973) Tin sulfides from the deposits of Brunswick tin mines. Can. Mineral., v.12, p.46-54.
  43. Ray, G.E., Webster, I.C.L. and Ettlinger, A.D. (1995) The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks. Econ. Geol., v.90, p.920-937. https://doi.org/10.2113/gsecongeo.90.4.920
  44. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  45. Seal II, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (ed.), Sulfide mineralogy and geochemistry. Reviews in Mineralogy & Geochemistry. Mineral. Soc. Am., v.61, p.633-677.
  46. Seo, J.U., Choi, S.G., Kim, C.S., Park, J.W., Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo mineralization at lower part of western Shinyemi ore body in Taeback area. Jour. Miner. Soc. Korea, v.20, p.35-46.
  47. So, C.S., Yun, S.T., Kim, S.H., Youm, S.J., Heo, C.H. and Choi, S.G. (1993) Mesothermal gold-silver mineralization at the Bodeok mine, Boseong area: a fluid inclusion and stable isotope study. Jour. Korean Inst. Mining Geol., v.26, p.433-444.
  48. Sui, J.X., Li, J.W., Wen, G. and Jin, X.Y. (2017) The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geol. Rev., v.80, p.1230-1244. https://doi.org/10.1016/j.oregeorev.2016.09.018
  49. Vaughan, D.J. and Craig, J.R. (1997) Sulfide ore mineral stabilities, morphologies, and intergrowth textures. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, p.367-434.
  50. Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn skarn deposits in Gukjeon mine, Korea. Jour. Miner. Soc. Korea., v.23, p.413-428.
  51. Yeom, T.S. and Shin, D.B. (2015) Ore minerals and genetic environments of the Seungryung Zn deposit, Muzu, Korea. Econ. Environ Geol., v.1, p.1-13.
  52. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Econ. Environ. Geol., v.35, p.299-316.