참고문헌
- Airoldi EM, Costa T, Bassetti F, Leisen F, and Guindani M (2014). Generalized species sampling priors with latent Beta reinforcements. Journal of the American Statistical Association, 109, 1466-1480. https://doi.org/10.1080/01621459.2014.950735
- Andrews DF and Mallows CL (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society Series B (Methodological), 36, 99-102.
- Antoniak CE (1974). Mixture of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2, 1152-1174. https://doi.org/10.1214/aos/1176342871
- Argiento R, Cremaschi A, and Guglielmi A (2014). A "density-based" algorithm for cluster analy-sis using species sampling Gaussian mixture models. Journal of Computational and Graphical Statistics, 23, 1126-1142. https://doi.org/10.1080/10618600.2013.856796
- Banfield JD and Raftery AE (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics. 49, 803-821. https://doi.org/10.2307/2532201
- Barry D and Hartigan JA (1992). Product partition models for change point problems. The Annals of Statistics, 20, 260-279. https://doi.org/10.1214/aos/1176348521
- Blackwell D and MacQueen JB (1973). Ferguson distributions via P'olya urn schemes. The Annals of Statistics, 1, 353-355. https://doi.org/10.1214/aos/1176342372
- Booth JG, Casella G, and Hobert JP (2008). Clustering using objective functions and stochastic search. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 70, 119-139. https://doi.org/10.1111/j.1467-9868.2007.00629.x
- Bush CA and MacEachern SN (1996). A semiparametric Bayesian model for randomized block design. Biometrika, 83, 275-285. https://doi.org/10.1093/biomet/83.2.275
- Crowley EM (1997). Product partition models for normal means. Journal of the American Statistical Association, 92, 192-198. https://doi.org/10.1080/01621459.1997.10473616
- Dempster AP, Laird NM, and Rubin DB (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39, 1-38.
- Dielman TE (1984). Least absolute value estimation in regression models: an annotated bibliography. Communications in Statistics Theory and Methods, 4, 513-541.
- Dielman TE (2005). Least absolute value regression: recent contributions. Journal of Statistical Computation and Simulation, 75, 263-286. https://doi.org/10.1080/0094965042000223680
- Dunson DB, Pillai N, and Park JH (2007). Bayesian density regression. Journal of the Royal Statistical Society Series B (Statistical Methodology), 69, 163-183. https://doi.org/10.1111/j.1467-9868.2007.00582.x
- Escobar MD and West M (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
- Ferguson TS (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
- Fritsch A and Ickstadt K (2009). Improved criteria for clustering based on the posterior similarity matrix. Bayesian Analysis, 4, 367-392. https://doi.org/10.1214/09-BA414
- Fraley C and Raftery AE (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97, 611-631. https://doi.org/10.1198/016214502760047131
- Fraley C and Raftery AE (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24, 155-181. https://doi.org/10.1007/s00357-007-0004-5
- Fraley C, Raftery AE, Murphy TB, and Srucca L (2012). mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation, University of Washington, Department of Statistics.
- Hartigan JA (1990). Partition models. Communications in Statistics Theory and Methods, 19, 2745-2756. https://doi.org/10.1080/03610929008830345
- Ishwaran H and James LF (2001) Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96, 161-173. https://doi.org/10.1198/016214501750332758
- Ishwaran H and James LF (2003) Some further developments for stick-breaking priors: finite and infinite clustering and classification. Sankhya: The Indian Journal of Statistics, 65, 577-592.
- Ishwaran H and Zarepour M (2000) Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika, 87, 371-390. https://doi.org/10.1093/biomet/87.2.371
- Jordan C, Livingstone V, and Barry D (2007). Statistical modelling using product partition models. Statistical Modelling, 7, 275-295. https://doi.org/10.1177/1471082X0700700304
- Kyung M, Gill J, Ghosh M, and Casella G (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5, 369-412. https://doi.org/10.1214/10-BA607
- MacEachern SN (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, VA, Alexandria, VA.
- MacEachern SN (2000). Dependent Dirichlet processes. Department of Statistics, The Ohio State University, Columbus, OH.
- MacEachern SN and Muller P (1998). Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 7, 223-238.
- McCullagh P and Yang J (2007). Stochastic classification models. In Proceedings of the International Congress of Mathematicians (Madrid, 2006), Madrid, 669-686.
- McLachlan GJ and Peel D (2000). Finite Mixture Models, John Wiley & Sons, New York.
- Muller P, Quintana F, Jara A, and Hanson T (2015). Bayesian Nonparametric Data Analysis, Springer, Cham.
- Muller P, Quintana F, and Rosner GL (2011). A product partition model with regression on covariates. Journal of Computational and Graphical Statistics, 20, 260-278. https://doi.org/10.1198/jcgs.2011.09066
- Murua A and Quintana FA (2017). Semiparametric Bayesian regression via Potts model. Journal of Computational and Graphical Statistics, 26, 265-274. https://doi.org/10.1080/10618600.2016.1172015
- Neal RM (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.
- Park JH and Dunson DB (2010). Bayesian generalized product partition model. Statistica Sinica, 20, 1203-1226.
- Pitman J (1996). Some developments of the Blackwell-MacQueen urn scheme, Statistics, Probability and Game Theory, 245-267, IMS Lecture Notes Monograph Series, 30, Institute of Mathematical Statistics, Hayward, CA.
- Richardson S and Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society, Series B, 59, 731-792. https://doi.org/10.1111/1467-9868.00095
- Sethuraman J (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639-650.
- SongW, YaoW, and Xing Y (2014). Robust mixture regression model fitting by Laplace distribution. Computational Statistics and Data Analysis, 71, 128-137. https://doi.org/10.1016/j.csda.2013.06.022
- Stephens M (2000) Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B, 62, 795-809. https://doi.org/10.1111/1467-9868.00265
- Tokdar ST, Zhu YM, and Ghosh JK (2010). Bayesian density regression with logistic Gaussian process and subspace projection. Bayesian Analysis, 5, 319-344. https://doi.org/10.1214/10-BA605
- Tsanas A and Xifara A (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49, 560-567. https://doi.org/10.1016/j.enbuild.2012.03.003
- Quintana FA and Iglesias PL (2003). Bayesian clustering and product partition models. Journal of the Royal Statistical Society Series B (Statistical Methodology), 65, 557-574. https://doi.org/10.1111/1467-9868.00402
- Wolfe JH (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5, 329-350. https://doi.org/10.1207/s15327906mbr0503_6