References
- Berkes I, Hormann S, and Horv'ath L (2008). The functional central limit theorem for a family of GARCH observation with applications. Statistics and Probability Letters, 78, 2725-2730. https://doi.org/10.1016/j.spl.2008.03.021
- Billingsley P (1968). Convergence of Probability Measures, Wiley, New York.
- Bollerslev T (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Economet-rics, 31, 307-327.
- Conrad C (2010). Non-negativity conditions for the hyperbolic GARCH model. Journal of Econo-metrics, 157, 441-457.
- Conrad C and Haag BR (2006). Inequality constraints in the fractionally integrated GARCH model. Journal of Financial Econometrics, 4, 413-449. https://doi.org/10.1093/jjfinec/nbj015
- Csorgo M and Horv'ath L (1997). Limit Theorems in Change-Point Analysis, Wiley, New York.
- Davidson J (2002). Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. Journal of Econometrics, 106, 243-269. https://doi.org/10.1016/S0304-4076(01)00100-2
- Davidson J (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22, 16-29. https://doi.org/10.1198/073500103288619359
- Dedecker J, Doukhan P, Lang G, Leon JR, Louhichi S, and Prieur C (2007). Weak Dependence, Examples and Applications, Springer, New York.
- De Jong RM and Davidson J (2000). The functional central limit theorem and weak convergence to stochastic integrals I: weakly dependent processes. Econometric Theory, 16, 643-666. https://doi.org/10.1017/S0266466600165028
- Doukhan P and Wintenberger O (2007). An invariance principle for weakly dependent stationary general models. Probability and Mathematical Statistics, 27, 45-73.
- Engle RF (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
- Giraitis L, Kokoszka P, and Leipus R (2000). Stationary ARCH models: dependence structure and central limit theorem. Econometric Theory, 16, 3-22.
- Herrndorf N (1984). A functional central limit theorem for weakly dependent sequences of random variables. The Annals of Probability, 12, 141-153. https://doi.org/10.1214/aop/1176993379
- Hwang EJ and Shin DW (2013). A CUSUM test for a long memory heterogeneous autoregressive models. Economics Letters, 121, 379-383. https://doi.org/10.1016/j.econlet.2013.09.014
-
Kazakevicius V and Leipus R (2002). On stationarity in the ARCH(
$H_{\infty}$ ) model. Econometric Theory, 18, 1-16. https://doi.org/10.1017/S0266466602181011 - Lee O (2014a). Functional central limit theorems for augmented GARCH(p, q) and FIGARCH pro-cesses. Journal of the Korean Statistical Society, 43, 393-401. https://doi.org/10.1016/j.jkss.2013.12.001
-
Lee O (2014b). The functional central limit theorem and structural change test for the HAR(
$H_{\infty}$ ) model. Economic Letters, 124, 370-373. https://doi.org/10.1016/j.econlet.2014.06.029 - Li M, Li W, and Li G (2015). A new hyperbolic GARCH model. Journal of Econometrics, 189, 428-436. https://doi.org/10.1016/j.jeconom.2015.03.034
- Robinson PM (1991). Testing for strong correlation and dynamic conditional heteroskedasticity in multiple regression. Journal of Econometrics, 47, 67-84. https://doi.org/10.1016/0304-4076(91)90078-R
-
Zaffaroni P (2004). Stationarity and memory of ARCH(
$H_{\infty}$ ) models, Econometric Theory, 20, 147-160.