DOI QR코드

DOI QR Code

Design and Fabrication of a Reconfigurable Frequency Selective Surface Using Fluidic Channels

  • Son, Dong Chan (Department of Electrical and Computer Engineering, Ajou University) ;
  • Shin, Hokeun (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Yoon Jae (Agency for Defense Development) ;
  • Hong, Ic Pyo (Department of Information & Communication Engineering, Kongju National University) ;
  • Chun, Heoung Jae (Department of Mechanical Engineering, Yonsei University) ;
  • Park, Yong Bae (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2017.04.03
  • Accepted : 2017.06.28
  • Published : 2017.11.01

Abstract

In this study, we design a reconfigurable frequency selective surface (FSS) using fluidic channels to use the FSS in multi-frequencies. Effective permittivity can be changed using water as the fluid of fluidic channels in a dielectric slab, and the frequency characteristics of FSS can be controlled. We optimize the dimensions of the fluidic channel to design a reconfigurable FSS and measure its transmission characteristics.

Keywords

References

  1. S. W. Lee and Y. J. Sung, "A polarization Diversity Patch Antenna with a Reconfigurable Feeding Network," J. Electromagn. Eng. Sci., vol. 115, no. 2, pp. 115-119, Apr. 2015.
  2. Y. Wang, K. -C. Yoon, and J. -C. Lee, "A Frequency Tunable Double Band-Stop Resonator with Voltage Controller by Varactor Diodes," J. Electromagn. Eng. Sci., vol. 16, no. 3, pp.159-163, Jul. 2016. https://doi.org/10.5515/JKIEES.2016.16.3.159
  3. D. S. Kim, B. J. Kim, and S. W. Nam, "A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter," J. Electromagn. Eng. Sci., vol. 16, no. 3, pp.164-168, Jul. 2016. https://doi.org/10.5515/JKIEES.2016.16.3.164
  4. H. L. Lee, D. H. Park, and M. -Q. Lee, "A Reconfigurable Directional Coupler Using a Variable Impedance Mismatch Reflector for High Isolation," J. Electromagn. Eng. Sci., vol. 16, no. 4, pp.206-209, Oct. 2016. https://doi.org/10.5515/JKIEES.2016.16.4.206
  5. S. H. Hwang, C. G. Kang, S.-M. Lee, and M. -Q. Lee, "Reconfigurable Wireless Power Transfer System for Multiple Receivers," J. Electromagn. Eng. Sci., vol. 16, no. 4, pp. 199-205, Oct. 2016. https://doi.org/10.5515/JKIEES.2016.16.4.199
  6. D. Peroulis, K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 645-654, Feb. 2005. https://doi.org/10.1109/TAP.2004.841339
  7. G. I. Kiani, K. P. Esselle, A. R. Weily, and K. L. Ford, "Active frequency selective surface using pin diodes," IEEE Trans. Antennas Propag. Int. Symp., pp. 4525-4528, Jun. 2007.
  8. G. I. Kiani, K. L. Ford, L. G. Olsson, K. P. Esselle, and C.J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 581-584, Feb. 2010. https://doi.org/10.1109/TAP.2009.2037772
  9. D. T. M. Rosales, A. E. Martynyuk, J. I. M. Lopez, and J. R. Cuevas, "Frequency Selective Surfaces based on ring slots loaded with monolithically integrated capacitors," IET Microw. Antennas Propag., vol. 6, no. 3, pp. 254-250, Mar. 2012.
  10. A. Boukarkar, X. Q. Lin, and Y. Jiang, "A dual-band frequency tunable magnetic dipole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 492-495, Mar. 2016. https://doi.org/10.1109/LAWP.2015.2454001
  11. B. Schoenlinner, A. A. Tamigani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS Kaband Frequency Selective Surface," IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2474-2481, Nov. 2004. https://doi.org/10.1109/TMTT.2004.837148
  12. J. M. Zendejas, J. P. Gianvittorio, Y. Rahmat-Samii, and J. W. Judy, "Magnetic MEMS Reconfigurable Frequency-Selective Surfaces," J. Microelectromech. Syst., vol. 15, no. 3, pp. 613-623, Jun. 2006. https://doi.org/10.1109/JMEMS.2005.863704
  13. K. M. J. Ho and G. M. Rebeiz, "A 0.9-1.5 GHz microstrip antenna with full polarization diversity and frequency agility," IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2398-2406, May 2014. https://doi.org/10.1109/TAP.2014.2307295
  14. K. Ling, H. K. Kim, M. Y. Yoo, and S. J. Lim. "Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy," Sensor, vol. 15, no. 11, 28154-28165, Nov. 2015. https://doi.org/10.3390/s151128154
  15. K. Ling, H. K. Kim, M. Y. Yoo, and S. J. Lim. "Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna," IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2572-2576, Jun. 2016. https://doi.org/10.1109/TAP.2016.2551358
  16. J. H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, "Reversibly Deformable and Mechanically Tunable Fluidic Antennas," Adv. Funct. Mater., vol. 19, no. 22, pp. 3632-3637, Sep. 2009. https://doi.org/10.1002/adfm.200900604
  17. M. Konca and P.A.Warr, "A Frequency-Reconfigurable Antenna Architecture Using Dielectric Fluids", IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 2572-2576, Dec. 2015. https://doi.org/10.1109/TAP.2015.2416757
  18. T. Meissner and F. J. Wentz, "The complex dielectric constant of pure and sea water from microwave satellite observations," IEEE Trans. Geosci. Remote Sensing., vol. 40, no. 9, pp. 1356-1365, June 2002. https://doi.org/10.1109/TGRS.2002.800230
  19. W. J. Ellison, K. Lamkaouchi and J. -M. Moreau, "Water : A dielectric reference", J. of Mol. Liquids., vol. 68, pp. 171-279, Jan. 1996. https://doi.org/10.1016/0167-7322(96)00926-9
  20. C. A. Balanis, Advanced Engineering Electromagnetics, WILEY, pp. 140-209, 2012.
  21. CST. (2012) [Online]. Available: www.cst.com.
  22. M. Kouzai, A. Nishikata, K. Fukunaga and S. Miyaoka, "Complex permittivity measurement at millimetre wave frequencies during the fermentation process of Japanese sake", J. Phys. D: Appl. Phys., vol. 40, pp. 54-60, Dec. 2006.