DOI QR코드

DOI QR Code

Effect of Reinforcement Layout on Structural Performance of Reinforced Concrete Coupling Beams with High-strength Steel Bar

철근상세에 따른 고강도 철근이 사용된 철근콘크리트 연결보의 구조성능

  • 장석준 (충남대학교 건축공학과) ;
  • 정권영 (충남대학교 건축공학과) ;
  • 김선우 (충남대학교 건설공학교육과) ;
  • 윤현도 (충남대학교 건축공학과) ;
  • 천영수 (한국토지주택공사 토지주택연구원)
  • Received : 2016.11.18
  • Accepted : 2017.02.03
  • Published : 2017.03.01

Abstract

This paper describes the experimental results for the structural performance of full-scale coupling beams with different reinforcement layout (diagonal and horizontal). For the reinforcements of the coupling beams, high-strength steel bars(SD500 and SD600) were used in order to improve workability and economic feasibility. The rigid steel frames and linked joints were used to maintain the clear span length (distance between both shear walls) of the coupling beam during the cyclic loading. Experimental results indicated that the diagonally reinforced coupling beam specimen could exhibit more ductile behavior compared to horizontally reinforced specimen. ACI318-14 code is applicable to design of coupling beam with diagonally reinforcement, however, that is overestimating the strength of horizontally reinforced coupling beam. It is remarkable that effective elastic stiffness values of both reinforcement details coupling beam significantly lees than ASCE 41-13.

본 연구는 철근상세(대각선 및 수평 철근상세)가 실규모 연결보의 구조성능에 미치는 영향을 평가하기 위하여 실시되었다. 연결보의 시공성 및 경제성을 향상시키기 위하여 고강도 철근(SD500 및 SD600)을 사용하였다. 반복하중이 작용하는 동안 연결보의 순경간(양쪽 전 단벽 사이의 간격)을 유지하기 위하여 강체 프레임 및 링크조인트를 설치하였다. 실험결과 대각선 철근상세을 적용한 연결보가 수평 철근상세 연결보에 비해 높은 연성을 나타내었다. AC1318-14 기준은 대각선 철근상세의 연결보 설계에는 적용이 가능할 것으로 판단되나, 수평 철근상세 연결보의 최대내력은 과대평가하는 것으로 나타났다. ASCE 41-13에서 제시된 연결보의 유효강성은 대각선 및 수평 철근상세를 적용한 연결보의 실험결과를 과대평가하고 있는 것으로 판단된다.

Keywords

References

  1. ACI Committee 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, American Concrete Institute.
  2. ASCE/SEI 41-13 (2013), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers.
  3. Chang, Y. H. (2012), Study on Detailing for Reinforced Concrete Coupling Beam of Shear Wall, Master's thesis, Department of Civil Engineering, National Taiwan University (in Chinese).
  4. Galano, L., and Vignoli, A. (2000), Seismic behavior of short coupling beams with different reinforcement layouts, Structural Journal, 97(6), 876-885.
  5. KCI (2012), Design Code for Concrete Structural, Korean Concrete Institute (in Korean).
  6. KCI and LH (2015), Test of Shear Wall and Coupling Beam for Calibration of Nonlinear Modeling Parameters (in Korean).
  7. KS D 3504 (2016), Steel Bars for Concrete Reinforcement, Korean Standards Association (in Korean).
  8. KS F 2403 (2014), Standard Test Method of Making and Curing Concrete Specimens, Korean Standards Association (in Korean).
  9. KS F 2405 (2010), Standard Test Method for Compressive Strength of Concrete, Korean Standards Association (in Korean).
  10. Lim, E., Hwang, S. J., Cheng, C. H., and Lin, P. Y. (2016), Cyclic Tests of Reinforced Concrete Coupling Beam with Intermediate Span-Depth Ratio, ACI Structural Journal, 113(3), 515-524.
  11. Lim, E., Hwang, S. J., Wang, T. W., and Chang, Y. H. (2016), An Investigation on the Seismic Behavior of Deep Reinforced Concrete Coupling Beams, ACI Structural Journal, 113(2), 217-226.
  12. Naish, D., Fry, A., Klemencic, R., and Wallace, J. (2013), Reinforced concrete coupling beams-part II: modeling, ACI Structural Journal, 110(6), 1067-1075.
  13. Pan, A., and Moehle, J. P. (1989), Lateral displacement ductility of reinforced concrete flat plates, Structural Journal, 86(3), 250-258.
  14. Park, R., and Paulay, T. (1975), Reinforced Concrete Structural, JOHN WILEY and SONS.

Cited by

  1. 연결보의 배근 상세 효과 평가 vol.25, pp.2, 2021, https://doi.org/10.11112/jksmi.2021.25.2.49