DOI QR코드

DOI QR Code

The Effects of Drought Stress on Inorganic Compound and Growth of Potato Plant

건조스트레스가 감자 식물체 무기성분 및 생육에 미치는 영향

  • Bak, Gyeryeong (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Lee, Gyejun (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Cho, Jihong (Highland Agriculture Research Institute, National Institute of Crop Science)
  • 백계령 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 이계준 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 조지홍 (농촌진흥청 국립식량과학원 고령지농업연구소)
  • Received : 2017.05.04
  • Accepted : 2017.09.01
  • Published : 2017.09.30

Abstract

Yield of potato is largely influenced by drought stress. This study was conducted in Gangneung and Cheongju during the spring cropping of potato. Potatoes in the Gangneung area were affected by drought but there was no damage due to drought in Cheongju. During the early-growth stage, the contents of inorganic components like available phosphate and growth characteristics of the potato leaf in Cheongju were significantly higher than those in Gangneung but there was no difference after the flowering stage. It was considered that the potato plants cultivated in Cheongju could vigorously grow than that of Gangneung under drought stress. In addition, the content of calcium (Ca), which is a secondary messenger related to aging, was found to be higher in potato plants grown in Cheongju than in Gangneung and accumulated more quickly in potato plants of Cheongju. Because magnesium (Mg) was also found to be higher in potato plants from Gangneung by a wide margin, this phenomenon was thought be related with drought stress. The amounts of all inorganic components absorbed from soil were higher in Cheongju than in Gangneung, showing a relatively higher plant biomass in Cheongju. Correlations of development indexes related to leaf showed less or no relation in Gangneung. According to yield characteristics of the harvest stage, although yield was greatly reduced under drought stress condition, the rate of commercial yield was not significantly affected under the drought stress condition. Consequently, it was considered that these responses to drought stress could be utilized to stabilize potato production under the stressful conditions associated with abnormal climate.

가뭄조건에서 봄감자의 무기성분함량 및 생육특성에 대한 결과는 다음과 같다. 생육기간 중 식물체 내 무기성분함량 중 유효인산은 생육 초반 청주에서 유의하게 높았지만 개화기 이후 차이가 없어졌으며, 칼슘은 청주지역보다 강릉에서 더 빠르고 흡수되고 많은 체내 축적을 보였다. 마그네슘은 청주보다 강릉에서 높은 함량은 보여 건조스트레스에 따른 칼슘 흡수와 매우 밀접하게 관계가 있다고 생각된다. 생육기간 중 토양 양분 흡수량은 모든 무기양분을 청주가 강릉보다 더 많이 흡수하였으며, 이는 청주의 감자 생육량이 건조스트레스로 제대로 생육하지 못한 강릉의 감자보다 크고, 생육기간도 더 길었기 때문으로 추정된다. 감자주요 생육기의 생육은 강릉과 청주 모두 비슷하였지만 강릉에서의 생육량 감소가 더 큰 경향을 보였다. 각 생육지표들의 상관관계는 건조에 취약한 잎을 제외한 다른 요소들은 강릉과 청주 모두 정의 상관관계를 보였지만, 잎의 영향을 받는 요소들은 강릉에서 그 상관관계를 볼 수 없었다. 감자 괴경의 수량은 상품비율은 건조스트레스를 받지 않을 때와 큰 차이를 보이지 않았으나, 건조스트레스 하에서 지상부의 생육이 저하되고 생육기간이 짧아 수량은 크게 감소되었다.

Keywords

References

  1. Ashofteh, P. -S., O. B. Haddad, M. A. Marino, and D. M. Asce. 2015. Risk Analysis of Water Demand for Agricultural Crops under Climate Change. Journal of Hydrologic Engineering 20(4) : 04014060-1-04014060-10. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001053
  2. Calzadilla, A., K. Rehdanz, R. Betts, P. Fallon, A. Wiltshire, and R. S. J. Tol. 2013. Climate change impacts on global agriculture. Climate Change 120(1-2) : 357-371. https://doi.org/10.1007/s10584-013-0822-4
  3. Chartzoulakis, K. and M. Bertaki. 2015. Sustainable Water Management in Agriculture under Climate Change. Agriculture and Agricultural Science Procedia. 4: 88-98. https://doi.org/10.1016/j.aaspro.2015.03.011
  4. Cook, E. R., R. Seager, and M. A. Cane, 2007. North American drought: reconstructions, causes, and consequences. Earth Science Reviews. 81(1-2): 93-134. https://doi.org/10.1016/j.earscirev.2006.12.002
  5. Elliott, J., D. Deryng, C. Muller, K. Frieler, M. Konzmann, and D. Gerten. 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences 111(9) : 3239-3244. https://doi.org/10.1073/pnas.1222474110
  6. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for sustainable development, 29(1) : 185-212. https://doi.org/10.1051/agro:2008021
  7. Faver, K. L., T. J. Gerik, P. M. Thaxton, and K. M. Elzik. 1996. Late season water stress in cotton.2. leaf gas exchange and assimilation capacity. Crop Science 36(4) : 922-928. https://doi.org/10.2135/cropsci1996.0011183X003600040018x
  8. Gimenez, C., V. J. Mitchell, and D. W. Lawlor. 1992. Regulation of photosynthetic rate of two sunflower hybrids under waterstress. Plant Physiology 98 : 516-524. https://doi.org/10.1104/pp.98.2.516
  9. Heuer, B. and A. Nadler. 1995. Growth, development and yield of potatoes under salinity and water deficit. Australian Journal of Agricultural Research 46 : 1477-1486. https://doi.org/10.1071/AR9951477
  10. Hijmans, R. J. 2003. The effect of climate change on global potato production. American Journal of Potato Research 80 : 271-280. https://doi.org/10.1007/BF02855363
  11. Jaleel, C. A., P. Manivannan, A. Wahid, and R. Panneerselvam. 2009. Drought stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International Journal of Agriculture & Biology 11(1) : 100-105.
  12. Cho, J. H., H. B. Shon, D. C. Chang, J. S. Im, H. J. Kim. 2011, Rediscovery of potatoes, RDA Interrobang. 29 : 1-20.
  13. Kolbe, H. and S. Stephan-Beckmann. 1997. Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). II. Tuber and whole plant. Potato Research (40) : 135-153.
  14. Lawlor, D. W. 2002. Limitation to photosynthesis in waterstressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89(7) : 871-885. https://doi.org/10.1093/aob/mcf110
  15. Luck, J., M. Spackman, A. Freeman, P. T. Bicki, W. Griffiths, K. Finlay, and S. Chakraborty. 2011. Climate change and diseases of food crops. plant pathology 60(1) : 113-121. https://doi.org/10.1111/j.1365-3059.2010.02414.x
  16. Obidiegwu, J. E., G. J. Bryan, H. G. Jones, and A. Prashar. 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science 22(6) : 1-23.
  17. Pinheiro, C. and M. M. Chaves. 2010. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany 62(3) : 869-882. https://doi.org/10.1093/jxb/erq340
  18. Taiz, L. and E. Zeiger. 2009. Plant Physiology fourth edition, Life science.
  19. Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant.