Acknowledgement
Supported by : Natural Science Foundation of China
References
- Amandolese, X., Michelin, S. and Choquel, M. (2013), "Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel", J. Fluid. Struct., 43(6), 244-255. https://doi.org/10.1016/j.jfluidstructs.2013.09.002
- Chen, A. and Ma, R. (2011), "Self-excited force model and parameter identification for soft flutter", Proceedings of the International Conference of Wind Engineering. Amsterdam, Netherlands, July.
- Chen, Z.Q., Yu, X.D., Yang, G. and Spencer, Jr. B.F. (2005), "Wind-induced self-excited loads on bridges", J. Struct. Eng., 131(12), 1783-1793. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1783)
- Cunningham, A.M. (2003), "Buzz, buffet and LCO on military aircraft-the aeroelastician's nightmares", Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Amsterdam, Netherlands, June.
- Daito, Y., Matsumoto, M. and Araki, K. (2002), "Torsional flutter mechanism of two-edge girders for long-span cable-stayed bridge", J. Wind Eng. Ind. Aerod., 90(12), 2127-2141. https://doi.org/10.1016/S0167-6105(02)00329-X
- Diana, G., Resta, F. and Rocchi, D. (2008), "A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain", J. Wind Eng. Ind. Aerod., 96(10), 1871-1884. https://doi.org/10.1016/j.jweia.2008.02.052
- Diana, G., Rocchi, D., Argentini, T. and Muggiasca, S. (2010), "Aerodynamic instability of a bridge deck section model: Linear and nonlinear approach to force modeling", J. Wind Eng. Ind. Aerod., 98(6), 363-374. https://doi.org/10.1016/j.jweia.2010.01.003
- Falco, M., Curami, A. and Zasso, A. (1992), "Nonlinear effects in sectional model aeroelastic parameters identification", J. Wind Eng. Ind. Aerod., 42(1-3), 1321-1332. https://doi.org/10.1016/0167-6105(92)90140-6
- Han, Y., Liu, S. and Cai, C.S. (2015), "Flutter stability of a long-span suspension bridge during erection", Wind Struct., 21(1), 41-61. https://doi.org/10.12989/was.2015.21.1.041
- Larose, G.L., Davenport, A.G. and King, J.P.C. (1993), "On the unsteady aerodynamic forces on a bridge deck in turbulent boundary layer flow", Proceedings of the 7th U.S. National Conference on Wind Engineering, pages 373-382, UCLA, Los Angeles, CA. G.C. Hart.
- Majid, D.L.A.H.A. and Basri, S. (2008), "LCO flutter of cantilevered woven glass/epoxy laminate in subsonic flow", Acta Mechanica Sinica, 24(1), 107-110. https://doi.org/10.1007/s10409-007-0117-y
- Naprstek, J. and Pospisil, S. (2011), "Post-critical behavior of a simple non-linear system in a cross-wind", Eng. Mech., 18(3-4), 193-201.
- Naprstek, J., Pospisil, S. and Hracov, S. (2007), "Analytical and experimental modelling of non-linear aeroelastic effects on prismatic bodies", J. Wind Eng. Ind. Aerod., 95(9), 1315-1328. https://doi.org/10.1016/j.jweia.2007.02.022
- Naprstek, J., Pospisil, S., Hoffer, R. and Sahlmen, J. (2008), "Self-excited nonlinear response of a bridge-type cross section in post-critical state", Proceedings of the 6th International Colloquium on Bluff Body Aerodynamics and Applications, Milano, Italy, July.
- Noda, M., Utsunomiya, H., Nagao, F., Kanda, M. and Shiraishi, N. (2003), "Effects of oscillation amplitude on aerodynamic derivatives", J. Wind Eng. Ind. Aerod., 91(1), 101-111. https://doi.org/10.1016/S0167-6105(02)00338-0
- Piccardo, G. (1993), "A methodology for the study of coupled aeroelastic phenomena", J. Wind Eng. Ind. Aerod., 48(2-3), 241-252. https://doi.org/10.1016/0167-6105(93)90139-F
- Scanlan, R.H. (1997), "Amplitude and turbulence effects on bridge flutter derivatives", J. Struct. Eng., 123(2), 232-236. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(232)
- Scanlan, R.H. and Tomko, J.J. (1971), "Air foil and bridge deck flutter derivatives", J. Eng. Mech. - ASCE, 97(6), 1717-1737.
- Tang, L., Bartels, R.E., Chen, P.C. and Liu, D.D. (2003), "Numerical investigation of transonic limit cycle oscillations of a two-dimensional supercritical wing", J. Fluid. Struct., 17(1), 29-41. https://doi.org/10.1016/S0889-9746(02)00114-7
- Tang, Y. (2015), "Nonlinear self-excited forces of streamlined box deck and nonlinear flutter response", Ph.D. Dissertation, Southwest Jiaotong University, Chengdu, China.
- Wang, B. and Zha, G.C. (2011), "Detached-eddy simulation of transonic limit cycle oscillations using high order schemes", Comput. Fluid., 52, 58-68. https://doi.org/10.1016/j.compfluid.2011.08.018
- Wu, T. and Kareem, A. (2013a), "A nonlinear convolution scheme to simulate bridge aerodynamics", Comput. Struct., 128, 259-271. https://doi.org/10.1016/j.compstruc.2013.06.004
- Wu, T. and Kareem, A. (2013b). "Aerodynamics and Aeroelasticity of Cable-Supported Bridges: Identification of Nonlinear Features", J. Eng. Mech. - ASCE, 139(12), 1886-1893. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000615
- Wu, T., Kareem, A. and Ge, Y. (2013), "Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges", Nonlinear Dynam., 74(3), 487-516. https://doi.org/10.1007/s11071-013-0984-7
- Xu, X. and Cao, Z.Y. (2001), "Linear and nonlinear aerodynamic theory of interaction between flexible long structure and wind", Appl. Math. Mech., 22(12), 1446-1457. https://doi.org/10.1007/BF02435549
- Ying, X.Y., Xu, F.Y. and Zhang, Z. (2016), "Study on numerical simulation and mechanism of soft flutter of a bridge deck". Proceedings of the ACEM. Jeju, Koraea, September.
- Zhang, M.J., Xu, F.Y. and Ying, X.Y. (2016), "Experimental investigations on the soft flutter of a bridge deck", Proceedings of the ACEM. Jeju, Koraea, September.
- Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2011), "Aerodynamic flutter analysis of a new suspension bridge with double main spans", Wind Struct., 14(3), 187-208. https://doi.org/10.12989/was.2011.14.3.187
- Zhu, L.D. and Gao, G.Z. (2015), "Influential factors of soft flutter phenomenon for typical bridge deck sections", J. Tongji University (Natural science), 43(9), 1289-1294. In Chinese.
Cited by
- Effect of residual stress and geometric imperfection on the strength of steel box girders vol.34, pp.3, 2017, https://doi.org/10.12989/scs.2020.34.3.423
- Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds vol.31, pp.6, 2017, https://doi.org/10.12989/was.2020.31.6.533