• Title/Summary/Keyword: streamlined steel box girder

Search Result 2, Processing Time 0.018 seconds

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

Wind-induced vibrations and suppression measures of the Hong Kong-Zhuhai-Macao Bridge

  • Ma, Cunming;Li, Zhiguo;Meng, Fanchao;Liao, Haili;Wang, Junxin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.179-191
    • /
    • 2021
  • A series of wind tunnel tests, including 1:50 sectional model tests, 1:50 free-standing bridge tower tests and 1:70 full-bridge aeroelastic model tests were carried out to systematically investigate the aerodynamic performance of the Hong Kong-Zhuhai-Macao Bridge (HZMB). The test result indicates that there are three wind-resistant safety issues the HZMB encounters, including unacceptable low flutter critical wind speed, vertical vortex-induced vibration (VIV) of the main girder and galloping of the bridge tower in across-wind direction. Wind-induced vibration of HZMB can be effectively suppressed by the application of aerodynamic and mechanical measures. Acceptable flutter critical wind speed is achieved by optimizing the main girder form (before: large cantilever steel box girder, after: streamlined steel box girder) and cable type (before: central cable, after: double cable); The installations of wind fairing, guide plates and increasing structural damping are proved to be useful in suppressing the VIV of the HZMB; The galloping can be effectively suppressed by optimizing the interior angle on the windward side of the bridge tower. The present works provide scientific basis and guidance for wind resistance design of the HZMB.