DOI QR코드

DOI QR Code

Design and Analysis of U-shaped Sampled Grating Distributed Bragg Reflector Lasers

U형 Sampled Grating DBR 레이저 다이오드의 설계 및 분석

  • 김경래 (광운대학교 전자통신공학과) ;
  • 정영철 (광운대학교 전자통신공학과)
  • Received : 2017.07.13
  • Accepted : 2017.08.09
  • Published : 2017.10.25

Abstract

A widely tunable U-shaped SGDBR (Sampled Grating Distributed Bragg Reflector) laser diode is designed and analyzed by means of a time-domain simulation. The U-shaped SGDBR laser diode consists of SGDBR, active, phase, and TIR (Total Internal Reflection) mirror sections, so the coupling losses across the sections should be carefully considered. The tuning range of the designed U-shaped SGDBR laser is about 1525-1570 nm, which is confirmed by the simulation. The simulation results show that the loss in the TIR mirror region should be less than about 2 dB, and the refractive-index difference at the butt coupling between the passive and active regions should be less than 0.1, to provide the complete tuning range.

U형 구조의 SGDBR (Sampled Grating Distributed Bragg Reflector) 레이저 다이오드를 설계하고, 시간 영역 시뮬레이션 방법으로 해석하였다. U형 구조의 SGDBR 레이저 다이오드는 SGDBR, 능동, 수동, TIR (Total Internal Reflection) 거울 영역들로 이루어져 있어서, 각 영역들 간의 결합 손실의 영향을 면밀히 고려하여야 한다. 설계된 U형 SGDBR 레이저 다이오드의 파장 가변범위는 1525 nm에서부터 1570 nm로서 시뮬레이션을 통하여 확인하였다. 설계 튜닝 범위에서 완전한 레이저 다이오드 특성을 얻기 위해서는, 미러 영역에서의 손실은 약 2 dB 이하이고, 능동 및 수동 영역 간 butt 결합에서의 매질 간 굴절률 차이는 0.1 이하를 유지하도록 도파 구조가 설계되어야 한다.

Keywords

References

  1. M. Veeraraghavan, R. Karri, T. Moors, M. Karol, and R. Grobler, "Architectures and protocols that enable new applications on optical networks," IEEE Commun. Mag. 39, 118-127 (2001).
  2. J. Buus and E. J. Murphy, "Tunable lasers in optical networks," J. Lightwave Technol. 24, 5-11 (2006). https://doi.org/10.1109/JLT.2005.859839
  3. D. T. Neilson, "Photonics for switching and routing," IEEE J. Sel. Topics Quantum Electron. 12, 669-678 (2006). https://doi.org/10.1109/JSTQE.2006.876315
  4. P. J. Williams, D. J. Robbins, F. O. Robson, and N. D. Whitbread, "High power and wide quasi-continuous tuning, surface ridge SG-DBR lasers," in Proc. Eur. Conf. Opt. Commun. (Munich, Germany, 2000).
  5. B. Mason, G. A. Fish, S. Denbaars, and L. A. Coldren, "Widely tunable sampled grating DBR laser with integrated electro-absorption modulator," IEEE Photon. Technol. Lett. 11, 638-640 (1999). https://doi.org/10.1109/68.766769
  6. F. Delorme, G. Terol, H. de Bailliencourt, S. Grosmaire, and P. Devoldere, "Long-term wavelength stability of 1.55-${\mu}m$ tunable distributed Bragg reflector lasers," IEEE J. Sel. Topics Quantum Electron. 5, 480-486 (1999). https://doi.org/10.1109/2944.788409
  7. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Topics Quantum Electron. 5, 988-999 (2000).
  8. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, "Broad-range wavelengthtunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993). https://doi.org/10.1109/3.234439
  9. M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, "74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector," IEEE Photon. Technol. Lett. 5, 735-737 (1993). https://doi.org/10.1109/68.229789
  10. G. Morthier, B. Moeyersoon, and R. Baets, "A $\lambda$/4-shifted sampled or superstructure grating widely tunable twin-guide laser," IEEE Photon. Technol. Lett. 13, 1052-1054 (2001). https://doi.org/10.1109/68.950732
  11. F. Le Gall, S. Mottet, N. Devoldere, and J. Landreau, "External cavity laser for DWDM access network," 24th Eur. Conf. Opt. Commun. 1, 285-286 (1998).
  12. B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. DenBaars, "Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 12, 762-764 (2000). https://doi.org/10.1109/68.853492
  13. B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, "Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers," Opt. Fiber Commun. Conf. 2000 1, 193-195 (2000).
  14. Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, "Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter," IEEE J. Sel. Topics Quantum Electron. 8, 1349-1357 (2002). https://doi.org/10.1109/JSTQE.2002.806677
  15. D. J. Blumenthal, "Tunable U-laser transmitter with integrated Mach-Zehnder modulator," U.S. Pat. Appl. No 14/146,717 (2014).
  16. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993). https://doi.org/10.1109/3.234440
  17. L. M. Zhang and J. E. Carroll, "Semiconductor 1.55 $\mu$laser source with gigabit/second integrated electroabsorptive modulator," IEEE J. Quantum Electron. 30, 2573-2577 (1994). https://doi.org/10.1109/3.333709
  18. B. S. Kim, J. K. Kim, Y. Chung, and S. H. Kim, "Timedomain large-signal analysis of widely tunable DBR laser diodes with periodically sampled and chirped gratings," IEEE Photon. Technol. Lett. 10, 39-41 (1998). https://doi.org/10.1109/68.651094
  19. J.-P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguide - Application to tunable Bragg filters," IEEE Photon. Technol. Lett. 30, 1801-1816 (1994).