DOI QR코드

DOI QR Code

Measurement of the Refractive Index of a Mixed Polymer by a Prism Spectrometer and its Application

프리즘 분광계를 이용한 혼합 폴리머의 굴절률 측정과 응용

  • Kim, Ji-Young (Department of Physics Education, Kyungpook National University) ;
  • Ju, Young-Gu (Department of Physics Education, Kyungpook National University)
  • 김지영 (경북대학교 물리교육과) ;
  • 주영구 (경북대학교 물리교육과)
  • Received : 2017.08.15
  • Accepted : 2017.09.15
  • Published : 2017.10.25

Abstract

We measured the refractive index of a mixed polymer (NOA61, NOA84) in the liquid and solid states. First we made a hollow prism and filled it with UV (ultraviolet) epoxy. Measurement of the apex angle and the minimum-deviation angle gave the refractive index of the liquid polymer. To measure the refractive index of the solid polymer, an additional structure was included in the hollow prism, and the UV epoxy filling in the hollow prism was hardened. In both cases of liquid and solid polymers, the refractive index of the mixed polymer turned out to be proportional to the mix ratio. These results provide a method to vary the focal length of a double stacked cylindrical microlens array using UV epoxy.

프리즘 분광계를 사용하여 액체 상태와 고체 상태의 혼합 폴리머(NOA61, NOA84) 굴절률을 측정하였다. 먼저 속이 빈 작은 프리즘을 제작하고 UV (ultra-violet) 에폭시를 채운 다음 프리즘의 꼭지각과 최소 편향각을 측정하여 굴절률을 측정하였다. 고체 상태의 폴리머는 속이 빈 프리즘에 추가 구조물을 넣고 UV 에폭시를 경화하여 고체 폴리머가 채워진 프리즘을 제작하고 굴절률을 측정하였다. 액체 상태나 고체 상태인 경우 모두, 두 종류의 에폭시를 섞어서 혼합 폴리머를 만들고 혼합비를 조절하면서 굴절률을 측정한 결과 혼합비에 비례하는 굴절률 측정값을 얻었다. 이러한 결과는 UV 에폭시를 사용한 원통형 이중 미세 렌즈배열의 초점거리를 조절할 수 있는 방법을 제공한다.

Keywords

References

  1. Y. M. Kim, Muli I: High school textbook (Kyohaksa, Seoul, Korea, 2013), Chapter 2.
  2. W. T. Kim, Gwahak: High school textbook (Kyohaksa, Seoul, Korea, 2011), Chapter 1.
  3. Y. M. Kim, Muli II: High school textbook (Kyohaksa, Seoul, Korea, 2013), Chapter 3.
  4. E. Hecht, Optics 4th Ed (Addison-Wesley, San Francisco, USA, 2002), Chapter 5.
  5. S. Singh, "Refractive index measurements and its applications," Phys. Scr. 65, 167 (2002). https://doi.org/10.1238/Physica.Regular.065a00167
  6. J. R. Lee, S. W. Kim, and Y. S. Lee, "Measurement of refractive index of liquids by the maximum and minimum deviated laser beam," Korean J. Opt. Photonics 19, 182-186 (2008). https://doi.org/10.3807/HKH.2008.19.3.182
  7. Y. J. Song, Ed. M. Thesis, Kyungpook National University, Daegu (2006), p. 15.
  8. D. D. Jenkins, "Refractive index of solutions," Phys. Educ. 17, 82-83 (1982). https://doi.org/10.1088/0031-9120/17/2/413
  9. H. Y. Lee and Y. G. Ju, "Light-emitting-diode illumination system based on a double-stacked cylindrical micro-lens array," New Phys.: Sae Mulli 64, 200-205 (2014). https://doi.org/10.3938/NPSM.64.200
  10. "Persistent lines of neutral mercury," https://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable3.htm.
  11. "Atomic spectra," http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/atspect2.html.
  12. Norland Products, "Norland optical adhesive 61," https://www.norlandprod.com/adhesives/noa61pg2.html.
  13. Norland Products, "Norland optical adhesive 61," https://www.norlandprod.com/adhesives/noa%2061.html.