DOI QR코드

DOI QR Code

Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies

초음파 전기증착법을 활용한 고효율 염소 발생용 루테늄 옥사이드 전극

  • Luu, Tran Le (Department of Mechatronics & Sensor Systems Technology, Vietnamese German University) ;
  • Kim, Choonsoo (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU)) ;
  • Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU))
  • 트란 루 레 (베트남 독일 대학교 메카트로닉스-센서 시스템 학과) ;
  • 김춘수 (서울대학교 화학생물공학부 화학공정 신기술 연구소 & 아시아에너지환경지속가능발전 연구소) ;
  • 윤제용 (서울대학교 화학생물공학부 화학공정 신기술 연구소 & 아시아에너지환경지속가능발전 연구소)
  • Received : 2017.07.25
  • Accepted : 2017.10.11
  • Published : 2017.10.31

Abstract

A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.

Keywords

References

  1. A. Bard, L. Faulkner (2001). Electrochemical methods - Fundamentals and applications, 2nd edition, Wiley, New York pp. 200-217.
  2. A. Mallik, B. Ray (2011). An analysis of the temperature-induced supersaturation effects on structure and properties of sono-electrodeposited copper thin films, Surf. Coat. Tech. 206 1947-1954. https://doi.org/10.1016/j.surfcoat.2011.09.066
  3. A. J. Terezo, E. C. Pereira (2002). Preparation and characterization of $Ti/RuO_2$ anodes obtained by sol-gel and conventional routes, Mater. Lett. 53 339-345. https://doi.org/10.1016/S0167-577X(01)00504-3
  4. Apha, (2005). Standard Methods for the Examination of Water and Wastewater, 21st edition, American Public Health Association, Washington, DC. pp. 4-46.
  5. A. Zeradjanina, F. Mantiab, J. Masaa, W. Schuhmann (2012). Utilization of the catalyst layer of dimensionally stable anodes - Interplay of morphology and active surface area, Electrochim. Acta. 82 408-414. https://doi.org/10.1016/j.electacta.2012.04.101
  6. B. Park, C. Lokhande, H. Park, K. Jung, O. Joo, (2004). Cathodic electrodeposition of $RuO_2$ thin films from RuCl3 solution, Mater. Chem. Phys. 87 59-66. https://doi.org/10.1016/j.matchemphys.2004.04.023
  7. B. Pollet, J. Hihn, T. Mason (2008). Sonoelectrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents, Electrochim. Acta. 53 4248-4256. https://doi.org/10.1016/j.electacta.2007.12.059
  8. B. Pollet, E. Valzer, Oliver J. Curnick (2011). Platinum sonoelectrodeposition on glassy carbon and gas diffusion layer electrodes, Int. J. Hydrogen Energy. 36 6248-6258. https://doi.org/10.1016/j.ijhydene.2011.01.137
  9. C. Hu, H. Guo, K. Chang and C. Huang (2009). Anodic composite deposition of $RuO.{\cdot}xH_2O-TiO_2$ for electrochemical supercapacitors, Electrochem. Commun. 11 1631-1634. https://doi.org/10.1016/j.elecom.2009.06.014
  10. C. Malmgren, A. K. Eriksson, A. Cornell, J. Backtrom, S. Eriksson, H. Olin (2010). Nanocrystallinity in $RuO_2$ coatings - Influence of precursor and preparation temperature, Thin Solid Films. 518 3615-3618. https://doi.org/10.1016/j.tsf.2009.09.065
  11. E. Lecina, I. Urrutia, J. Diez, J. Morgiel, P. Indyka (2012). A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al2O3 nanocomposite coatings, Surf. Coat. Tech. 206 2998-3005. https://doi.org/10.1016/j.surfcoat.2011.12.037
  12. E. Tsuji, A. Imanishia, K. Fukuia, Y. Nakato (2011). Electrocatalytic activity of amorphous $RuO_2$ electrode for oxygen evolution in an aqueous solution, Electrochim. Acta. 56 2009-2016. https://doi.org/10.1016/j.electacta.2010.11.062
  13. H. P. Klug, L. E. Alexander (1974). X-ray Diffraction Procedures, 2nd edition, Wiley, New York.
  14. H. Zheng, M. An (2008). Electrodeposition of Zn-Ni-$Al_2O_3$ nanocomposite coatings under ultrasound conditions, J. Alloy. Comp. 459 548-552. https://doi.org/10.1016/j.jallcom.2007.05.043
  15. I. Zhitomirsky, L. Gal-Or (1997). Ruthenium oxide deposits prepared by cathodic electrosynthesis, Mater. Lett. 31 155-159. https://doi.org/10.1016/S0167-577X(96)00262-5
  16. J. Aromaa, O. Forse (2006). Evaluation of the electrochemical activity of a Ti-$RuO_2-TiO_2$ permanent anode, Electrochim. Acta. 51 6104-6110. https://doi.org/10.1016/j.electacta.2005.12.053
  17. J. Chou, Y. Chen, M. Yang, Y. Chen, C. Lai, H. Chiu, C. Lee, Y. Chueh and J. Gan (2013). $RuO_2/MnO_2$ core-shell nanorods for supercapacitors, J. Mater. Chem. A. 1 8753-8759. https://doi.org/10.1039/c3ta11027c
  18. J. Garcia, M. Esclapez, P. Bonete, Y. Hernandez, L. Garreton, V. Saez, (2010). Current topics on sonoelectrochemistry, Ultrasonics. 50 318-322. https://doi.org/10.1016/j.ultras.2009.09.022
  19. J. Garcia, V. Saeza, M. Esclapeza, P. Bonetea, Y. Vargasb, L. Gaeteb (2010). Relevant developments and new insights on sonoelectrochemistry, Physics Proc. 3 117-124. https://doi.org/10.1016/j.phpro.2010.01.017
  20. J. Garcia, V. Saez, J. Iniesta, V. Montiel, A. Aldaz, (2002). Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound power, Electrochem. Commun. 4 370-373. https://doi.org/10.1016/S1388-2481(02)00319-3
  21. J. Han, S. Lee, S. Kim, S. Han, C. Hwang, C. Dussarrat, and J. Gatineau, (2010). Growth of $RuO_2$ thin films by pulsed-chemical vapor deposition using RuO4 precursor and 5% H2 reduction gas, Chem. Mater. 22 5700-5706. https://doi.org/10.1021/cm101694g
  22. J. Jirkovsky, H. Hoffmannova, M. Klementova and P. Krtil (2006). Particle size dependence of the electrocatalytic activity of nanocrystalline $RuO_2$ electrodes, J. Electrochem. Soc. 153 111-118.
  23. J. Jowa, H. Lee, H. Chena, M. Wu, T. Wei (2007). Anodic cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochim. Acta. 52 2625-2633. https://doi.org/10.1016/j.electacta.2006.09.018
  24. J. Jeong, C. Kim, J. Yoon (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res. 43 895-901. https://doi.org/10.1016/j.watres.2008.11.033
  25. J. Ribeiro, M. Moats, A. Andrade (2008). Morphological and electrochemical investigation of $RuO_2-Ta_2O_5$ oxide films prepared by the Pechini-Adams method, J. Appl. Electrochem. 38 767-775. https://doi.org/10.1007/s10800-008-9506-6
  26. J. Ribeiro and A. Andrade (2004). Microstructure, morphology and electrochemical investigation characterization of $RuO_2-Ta_2O_5$ coated Titanium electrode, J. Electrochem. Soc. 151 106-112.
  27. L. Burke and J. Mulcahy (1976). The formation and reduction of anodic films on electrodeposited ruthenium, J. Electroanal. Chem. 73 207-218. https://doi.org/10.1016/S0022-0728(76)80224-0
  28. L. D. Burke and J. F. O'Neill (1979). Some aspects of the chlorine evolution reaction at Ruthenium dioxides anodes, J. Electroanal. Chem. 101 341-349. https://doi.org/10.1016/S0022-0728(79)80045-5
  29. M. Hyde, R. Compton (2002). How ultrasound influences the electrodeposition of metals, J Electroanal. Chem. 531 19-24. (Hyde et al., 2002) [25] https://doi.org/10.1016/S0022-0728(02)01016-1
  30. M. Katerina, M. Marina; K. Petr (2009). Oxygen evolution on nanocrystalline $RuO_2$ and $Ru_{0.9}Ni_{0.1}O_2$ electrodes - DEMS approach to reaction mechanism determination. Electrochem. Commun. 11 1865-1868. https://doi.org/10.1016/j.elecom.2009.08.004
  31. M. Macherzynskia, A. Kasuya (2013). Electrodeposition of uniformly distributed Ru and Ru-Pt nanoparticles onto n-type Si electrodes, Electrochim Acta. 95 288-294. https://doi.org/10.1016/j.electacta.2013.02.043
  32. M. Metikos-Hukovic, R. Babic, F. Jovic, Z. Grubac (2006). Anodically formed oxide films and oxygen reduction on electrodeposited ruthenium in acid solution, Electrochim. Acta. 51 1157-1164. https://doi.org/10.1016/j.electacta.2005.05.029
  33. M. Vukovic (1989). Oxygen evolution on an electrodeposited Ruthenium electrode in acid solution - the effect of thermal treatment, Electrochim. Acta. 34 287-291. https://doi.org/10.1016/0013-4686(89)87099-9
  34. R. Burrows, D. Denton and J. Harrision (1978). Chlorine and oxygen evolution on various compositions of $RuO_2/TiO_2$ electrodes, Electrochim. Acta. 23 493-500. https://doi.org/10.1016/0013-4686(78)85026-9
  35. R. Chen, T. Vinh, A. R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann and R. Hempelmann (2012). Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction, Phys. Chem. Chem. Phys. 14 7392-7399. https://doi.org/10.1039/c2cp41163f
  36. R. Chen, T. Vinh, N. Harald, J. Kintrup, A. Bulan, R. Hempelmann (2012). Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies, Electrochem. Commun. 22 16-20. https://doi.org/10.1016/j.elecom.2012.05.021
  37. R. Walker (1997). Ultrasound improves electrolytic recovery of metals, Ultrason. Sonochem. 4 39-43. https://doi.org/10.1016/S1350-4177(96)00035-1
  38. S. Ardizzone, G. Fregonara, S. Trasatti (1990). Inner and outer active surface of $RuO_2$ electrodes, Electrochim. Acta. 35 263-267. https://doi.org/10.1016/0013-4686(90)85068-X
  39. S. Floate, M. Hyde, R. Compton (2002). Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound, J. Electroanal. Chem. 523 49-63. https://doi.org/10.1016/S0022-0728(02)00709-X
  40. S. Trasatti (1984). Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta. 29 1503-1512. https://doi.org/10.1016/0013-4686(84)85004-5
  41. S. Trasatti (1987). Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes, Electrochim. Acta. 32 369-382. https://doi.org/10.1016/0013-4686(87)85001-6
  42. T. L. Luu, C. Kim, J. Kim, S. Kim, J. Yoon (2015). The Effect of Preparation Parameters in Thermal Decomposition of Ruthenium Dioxide Electrodes on Chlorine Electro-Catalytic Activity, B. Kor. Chem. Soc. 36 1411-1417. https://doi.org/10.1002/bkcs.10275
  43. T. L. Luu, J. Kim, J. Yoon (2015). Physicochemical properties of $RuO_2$ and $IrO_2$ electrodes affecting chlorine evolutions, J. Ind. Eng. Chem. 21 400-404. https://doi.org/10.1016/j.jiec.2014.02.052
  44. Y. Niu, J. Wei, Y. Yang, J. Hu, Z. Yu (2012). Influence of microstructure on the wear mechanism of multilayered Ni coating deposited by ultrasound-assisted electrodeposition, Surf. Coat. Tech. 210 21-27. https://doi.org/10.1016/j.surfcoat.2012.08.015
  45. V. Panic, A. Dekanski, S. Milonjic, R. Atanasoski, B. Nikolic (1999). $RuO_2-TiO_2$ coated titanium anodes obtained by the sol-gel procedure and their electrochemical behaviour in the chlorine evolution reaction, Colloids Surf. A. 157 269-274. https://doi.org/10.1016/S0927-7757(99)00094-1
  46. V. Panic, A. Dekanski, M. Stankovic, S. Milonjic, B. Nikoli (2005). On the deactivation mechanisms of $RuO_2-TiO_2/Ti$ anodes prepared by the sol-gel procedure, J. Electroanal. Chem. 579 67-76. https://doi.org/10.1016/j.jelechem.2005.01.026
  47. V. Saez, J. Garcia, J. Iniesta, A. Ferrer, A. Aldaz (2004). Electrodeposition of $PbO_2$ on glassy carbon electrodes: influence of ultrasound frequency, Electrochem. Commun. 6 757-761.
  48. V. Srinivasan, P. Arora, P. Ramadass (2006). Report on the electrolytic industries for the year 2004, J. the Electrochem. Soc. 153 K1-K14. https://doi.org/10.1149/1.2172468
  49. V. Trieu, B. Schleya, H. Nattera, J. Kintrup, A. Bulan, R. Hempelmann (2012). $RuO_2$-based anodes with tailored surface morphology for improved chlorine electro-activity, Electrochim Acta. 78 188-194. https://doi.org/10.1016/j.electacta.2012.05.122
  50. Y. Zheng, H. Ding, M. Zhang (2008). Hydrous-ruthenium-oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films. 516 7381-7385. https://doi.org/10.1016/j.tsf.2008.02.022

Cited by

  1. Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells vol.10, pp.11, 2017, https://doi.org/10.3390/catal10111263