참고문헌
-
A. Ananth, S. Dharaneedharan, M. Gandhi, M. Heo, Y. Mok (2013). Novel
$RuO_2$ nanosheets - Facile synthesis, characterization and application, Chemical Chem. Eng. J. 223, 729-736. https://doi.org/10.1016/j.cej.2013.03.045 - A. Bard, L. Faulkner (2001). Electrochemical methods - Fundamentals and applications, Wiley, New York, pp. 226-261
-
C. Malmgren, A. K. Eriksson, A. Cornell, J. Backtrom, S. Eriksson, H. Olin. (2010). Nanocrystallinity in
$RuO_2$ coatings - Influence of precursor and preparation temperature, Thin Solid Films. 518, 3615-3618. https://doi.org/10.1016/j.tsf.2009.09.065 -
D. Music, J. Breunung, S. Mraz, J. Schneider (2012). Role of
$RuO_3$ for the formation of$RuO_2$ nanorods, Appl. Phys. Lett. 100, 033108 https://doi.org/10.1063/1.3677665 -
G. Zhao, L. Zhang, K. Sun, H. Li (2014). Free-standing
$Pt@RuO_2{\cdot}xH_2O$ nanorod arrays on Si wafers as electrodes for methanol electro-oxidation, J. Power Sources. 245, 892-897. https://doi.org/10.1016/j.jpowsour.2013.07.053 - H. Friedrich, P. Jongh, A. Verkleij, K. Jong (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials, Chem. Rev. 109, 1613-1626. https://doi.org/10.1021/cr800434t
- H. P. Klug, L. E. Alexander (1974). X-ray Diffraction Procedures, Wiley, New York.
-
J. Chou, Y. Chen, M. Yang, Y. Chen, C. Lai, H. Chiu, C. Lee, Y. Chueh, J. Gan (2013).
$RuO_2/MnO_2$ core-shell nanorods for supercapacitors, J. Mater. Chem. A. 1, 8753-8759. https://doi.org/10.1039/c3ta11027c -
J. Han, S. Lee, S. Kim, S. Han, C. Hwang, C. Dussarrat, and J. Gatineau (2010). Growth of
$RuO_2$ thin films by pulsed-chemical vapor deposition using$RuO_4$ precursor and 5%$H_2$ reduction gas, Chem. Mater. 22, 5700-5706. https://doi.org/10.1021/cm101694g - J. Jeong, C. Kim, J. Yoon (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res. 43, p 895-901. https://doi.org/10.1016/j.watres.2008.11.033
-
J. Osmana, J. Crayston, A. Pratt, D. Richens (2008).
$RuO_2-TiO_2$ mixed oxides prepared from the hydrolysis of the metal alkoxides, Mater. Chem. Phys. 110, 256-262. https://doi.org/10.1016/j.matchemphys.2008.02.003 - J. Tiwari, R. Tiwari, K. Kim, Zero-dimensional (2012). one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater Sci. 57, 724-803. https://doi.org/10.1016/j.pmatsci.2011.08.003
- L. Dong and J. Jiao (2006). Dielectrophoretic fabrication and electron microscopy characterization of one-dimensional-nanomaterial-based devices, Microscopy and Microanalysis. 12, 482-483. https://doi.org/10.1017/S1431927606062842
- M. CaO, Y. Wang, C. Guo, Y. Qi, C. Hu, E. Wang (2004). A simple route towards CuO nanowires and nanorods, J. Nanosci. Nanotechnol. 4, 824-828. https://doi.org/10.1166/jnn.2004.822
-
M. Gopiraman, S. Babu, Z. Khatri, K. Wei, M. Endo, R. Karvembu and I. Kim (2013). Facile and homogeneous decoration of
$RuO_2$ nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds, Catal. Sci. Technol. 3, 1485. https://doi.org/10.1039/c3cy20735h - P. Schmittinger (2000). Chlorine: principle and industrial practice, Wiley, New York, 21-34.
-
R. Burrows, D. Denton and J. Harrision (1978). Chlorine and oxygen evolution on various compositions of
$RuO_2/TiO_2$ electrodes, Electrochim. Acta. 23, 493-500. https://doi.org/10.1016/0013-4686(78)85026-9 - R. Chen, V Trieu, A. R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann and R. Hempelmann (2012). Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction, Phys. Chem. Chem. Phys. 14, 7392-7399. https://doi.org/10.1039/c2cp41163f
- R. Chen, V. Trieu, H. Natter, J. Kintrup, A. Bulan, R. Hempelmann (2012). Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies, Electrochem. Commun. 22, 16-20. https://doi.org/10.1016/j.elecom.2012.05.021
- R. Liu, J. Duay and S. Lee (2011). Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Commun. 47, 1384-1404. https://doi.org/10.1039/C0CC03158E
-
R. Kotz and S. Stuck (1986). Stabilization of
$RuO_2$ by$IrO_2$ for anodic oxygen evolution in acid media, Electrochim. Acta. 31, 1311-1316. https://doi.org/10.1016/0013-4686(86)80153-0 -
S. Ardizzone, G. Fregonara, S. Trasatti (1990). Inner and outer active surface of
$RuO_2$ electrodes, Electrochim. Acta. 35, 263-267. https://doi.org/10.1016/0013-4686(90)85068-X - S. Neupane, G. Kaganas, R. Valenzuela, L. Kumari, X. Wang, W. Li. (2011). Synthesis and characterization of ruthenium dioxide nanostructures, J. Mater Sci. 46, 4803-4811. https://doi.org/10.1007/s10853-011-5390-2
- S. Trasatti (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta. 29, 1503-1512. https://doi.org/10.1016/0013-4686(84)85004-5
-
Tran Le Luu, Jiye Kim, Jeyong Yoon (2015). hysicochemical properties of
$RuO_2$ and$IrO_2$ electrodes affecting chlorine evolutions, Journal of J. Ind. Eng. Chem. vol 21, 400-404. https://doi.org/10.1016/j.jiec.2014.02.052 -
V. Panic, A. Dekanski, S. Milonjic, R. Atanasoski, B. Nikolic (1999).
$RuO_2-TiO_2$ coated titanium anodes obtained by the sol-gel procedure and their electrochemical behaviour in the chlorine evolution reaction, Colloids Colloids Surf. A. 157, 269-274. https://doi.org/10.1016/S0927-7757(99)00094-1 -
V. Panic, A. Dekanski, M. Stankovic, S. Milonjic, B. Nikoli (2005). On the deactivation mechanisms of
$RuO_2-TiO_2/Ti$ anodes prepared by the sol-gel procedure, J. Electroanal. Chem. 579, 67-76. https://doi.org/10.1016/j.jelechem.2005.01.026 - V. Srinivasan, P. Arora, P. Ramadass (2006). Report on the electrolytic industries for the year 2004, Journal of the J. Electrochem. Soc. 153, K1. https://doi.org/10.1149/1.2172468
-
V. Trieu, B. Schleya, H. Nattera, J. Kintrup, A. Bulan (2012). R. Hempelmann,
$RuO_2$ -based anodes with tailored surface morphology for improved chlorine electroactivity, Electrochim. Acta. 78, 188-194. https://doi.org/10.1016/j.electacta.2012.05.122 - Y. Inoue, M. Uota, M. Uchigasaki, S. Nishi, T. Torikai, T. Watari, M. Yada (2008). Helical Ruthenium compound templated by 1-Dodecanesulfonate assemblies and its conversion into helical Ruthenium oxide and helical metallic Ruthenium, Chem. Mater. 20, 5652-5656. https://doi.org/10.1021/cm801398u
-
Y. Lee, B. Kim, H. Jung, J. Shim, Y. Lee, C. Lee, J. Baik, W. Kim, M. Kim (2012). Hierarchically grown single crystalline
$RuO_2$ nanorods on vertically aligned few walled carbon nanotubes, Mater. Lett. 89, 115-117. https://doi.org/10.1016/j.matlet.2012.08.097 - Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan (2003). One dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15, 353-389. https://doi.org/10.1002/adma.200390087
- Z. Li, Y. Xiong, Y. Xie (2003). Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem. 42, 8105-8109. https://doi.org/10.1021/ic034029q