DOI QR코드

DOI QR Code

Overexpression of an oligopeptide transporter gene enhances heat tolerance in transgenic rice

Oligopeptide transporter 관여 유전자 도입 형질전환벼의 고온스트레스 내성 증진

  • Jeong, Eun-Ju (Department of Crop Science, Chungbuk National University) ;
  • Song, Jae-Young (Department of Crop Science, Chungbuk National University) ;
  • Yu, Dal-A (Department of Crop Science, Chungbuk National University) ;
  • Kim, Me-Sun (Department of Crop Science, Chungbuk National University) ;
  • Jung, Yu-Jin (Department of Horticultural Life Science, Hankyong National University) ;
  • Kang, Kwon Kyoo (Department of Horticultural Life Science, Hankyong National University) ;
  • Park, Soo-Chul (The National Center for GM Crops, Rural Development Administration (RDA)) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University)
  • 정은주 (충북대학교 식물자원학과) ;
  • 송재영 (충북대학교 식물자원학과) ;
  • 유달아 (충북대학교 식물자원학과) ;
  • 김미선 (충북대학교 식물자원학과) ;
  • 정유진 (국립한경대학교 원예생명과학과) ;
  • 강권규 (국립한경대학교 원예생명과학과) ;
  • 박수철 (국립농업과학원 GM작물개발사업단) ;
  • 조용구 (충북대학교 식물자원학과)
  • Received : 2017.09.21
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

Rice (Oryza sativa) cultivars show an impairment of growth and development in response to abiotic stresses such as drought, salinity, heat and cold at the early seedling stage. The tolerance to heat stress in plants has been genetically modulated by the overexpression of heat shock transcription factor genes or proteins. In addition to a high temperature-tolerance that has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. To examine the heat tolerance in transgenic rice plants, three OsOPT10 overexpressing lines were characterized through a physiological analysis, which examined factors such as the electrolyte leakage (EL), soluble sugar and proline contents. We further functionally characterized the OsOPT10 gene and found that heat induced the expression of OsOPT10 and P5CS gene related proline biosynthesis. It has been suggested that the expression of OsOPT10 led to elevated heat tolerance in transgenic lines.

지구온난화로 인해 온도 상승에 따른 고온 스트레스는 전세계 많은 지역에서 농업적으로 문제가 되어 세계 3대 곡물인 벼의 생산에 피해가 크게 나타나고 있다. 식물은 생장하면서 다양한 환경스트레스에 노출되며, 이러한 스트레스는 작물의 생장, 발달, 수확량 등에 영향을 미친다. 본 연구는 벼의 안정적인 생산성을 높이기 위해 벼 유래 OsOPT 유전자를 이용한 형질전환 후대에서 고온 조건하에서도 생육이 가능한 계통을 선발하여 그 특성을 살펴보았다. 먼저, OsOPT10 유전자 도입 형질전환 벼를 이용하여 고온 처리에 따른 저항성 계통을 선발하고, 선발된 계통의 생리적 특성을 분석하였으며, 분자적 특성을 qRT-PCR을 통해 유전자의 발현 양상을 분석하였다. 고온 스트레스에 의한 세포막 피해 정도를 알아보기 위해 전해질 누출(electrolyte leakage), 삼투조절제 역할을 하는 수용성 당 및 proline 함량 분석을 하여 대조구와 비교분석 하였다. 본 실험에서 고온 처리에 의한 가용성 당 함량의 변화는 OsOPT10-16 형질전환 벼를 제외하고 OsOPT10-1와 OsOPT10-7 계통이 WT 보다 당 함량이 높게 나타났다. 모품종 동진에 비해 형질전환 벼 계통의 EL 값이 낮게 나타난 것과 가용성 당 함량이 비슷하거나 높게 나타난 것으로 보아 OsOPT10 형질전환 벼가 고온 스트레스에서 저항성 반응을 나타낸 것으로 판단하였다.

Keywords

References

  1. Ahuja I, Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664-674 https://doi.org/10.1016/j.tplants.2010.08.002
  2. Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Rad Biol Med 23:473-479 https://doi.org/10.1016/S0891-5849(97)00107-X
  3. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48-54
  4. Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 Transports Glutathione Derivatives and Is Induced by Primisulfuron. Plant Physiology 135:1378-1387 https://doi.org/10.1104/pp.104.039859
  5. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annual Review of microbiology 45:569-606 https://doi.org/10.1146/annurev.mi.45.100191.003033
  6. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  7. Dionisio-Sese ML, Tobita S (1998) Antioxidant response of rice seedlings to salinity stress. Plant Sci 135:1-9 https://doi.org/10.1016/S0168-9452(98)00025-9
  8. Foucaud C, Kunji ER, Hagting A, Richard J, Konings WN, Desmazeaud M, Poolman B (1995) Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di-and tripeptides. Journal of bacteriology 177(16):4652-4657 https://doi.org/10.1128/jb.177.16.4652-4657.1995
  9. Hauser M, Narita V, Donhardt AM, Naider F, Becker JM. (2001) Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Molecular membrane biology, 18:105-112 https://doi.org/10.1080/09687680010029374
  10. Higgins CF (1992) ABC transporters: from microorganisms to man. Annual review of cell biology 8:67-113 https://doi.org/10.1146/annurev.cb.08.110192.000435
  11. Howarth CJ (2005) Genetic improvements of tolerance to high temperature. Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York.
  12. Igarashi Y, Yoshiba I, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the statement of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33:857-865 https://doi.org/10.1023/A:1005702408601
  13. Jung YJ, Lee IH, Han KH, Son CY, Cho YG, Lee MC, Kang KK (2010) Expression analysis and characterization of rice oligopeptide transport gene (OsOPT10) that contributes to salt stress tolerance. Journal of Plant Biotechnology 37(4):483-493 https://doi.org/10.5010/JPB.2010.37.4.483
  14. Kavi Kishor PB, Zonglie H, Miao GH, Hu CA, Verma DPS (1995) Overexpression of ${\Delta}1$-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108(4):1387-1394 https://doi.org/10.1104/pp.108.4.1387
  15. Kishor P, Hong Z, Miao G, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387-1394 https://doi.org/10.1104/pp.108.4.1387
  16. Kropff MJ, Mathews RB, Vanlar HH, Tenberge HFM. (1995)'The rice model ORYZA1 and its testing', in: R.B. Matthews et al. (eds.), Modeling the Impact of Climate Change on Rice production in Asia. IRRI and CAB International. Wallingford, pp 27-50
  17. Lichtentaler HK (1995) Vegetation stress: an introduction to the stress concept in plants. J PlantPhysiol 148:4-14
  18. Lubkowitz MA, Hauser L, Breslav M, Naider F, Becker JM (1997) An oligopeptide transport gene from Candida albicans. Microbiology 143:387-396 https://doi.org/10.1099/00221287-143-2-387
  19. Nagai T and Makino A. (2009) Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant Cell Physiol 50:744-755 https://doi.org/10.1093/pcp/pcp029
  20. Paulsen IT, Skurray RA (1994) The POT family of transport proteins. Trends Biochem Sci 10: 404
  21. Pollard A, Wyn Jones RG. (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144:291-298 https://doi.org/10.1007/BF00388772
  22. Popp M, Smirnoff N. (1995) Polyol accumulation and metabolism during water deficit, p. 199-215. In: Environment and Plant Metabolism : Flexibility and Acclimation (Smironoff, N. ed.). Bios Scientific oxford
  23. Roosens NH, Willem R, Li Y, Verbruggen I, Biesemans M, Jacobs M (1999) Proline metabolism in the wild-type and in a salt tolerant mutant of Nictiana plumbaginifolia studied by 13C-nuclear magnetic resonance imaging. Plant Physiol 121:1281-1290 https://doi.org/10.1104/pp.121.4.1281
  24. Song JY, Kim DS, Lee G-J, Lee IS, Kang KK, Yun SJ, Kang S-Y (2007) Characterization of Salt Tolerant Rice Mutant Lines Derived from Azetidine-2-Carboxylic Acid Resistant Cell Lines Induced by Gamma Ray Irradiation. J Plant Biotechnol 34:61-68 https://doi.org/10.5010/JPB.2007.34.1.061
  25. Stacey MG, Osawa H, Patel A, Gassmann G, Stacey G (2006) Expression analysis of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223:291-305 https://doi.org/10.1007/s00425-005-0087-x
  26. Steiner HY, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Molecular microbiology 16:825-834 https://doi.org/10.1111/j.1365-2958.1995.tb02310.x
  27. Theocharis A, Clement C, Barka EA. (2012) Physiological and molecular changes in plants grown at low temperatures. Planta. 235: 11091-1105
  28. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ. Exp. Bot. 61:199-223 https://doi.org/10.1016/j.envexpbot.2007.05.011
  29. Yancey PH (2001) Water Stress, Osmolytes and Proteins. Amer. Zool 41:699-709