DOI QR코드

DOI QR Code

Analysis of ZjWRKY3, ZjWRKY7 induced by multiple stress in Zoysia japonica

다양한 스트레스에 유도되는 들잔디 ZjWRKY3, ZjWRKY7의 분석

  • Kim, Woo-Nam (Faculty of Biotechnology, Jeju National University) ;
  • Song, In-Ja (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kang, Hong-Gyu (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Sun, Hyeon-Jin (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Yang, Dae-Hwa (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lee, Yong-Eok (Department of Medical Bioscience, Dongguk University) ;
  • Kwon, Yong-Ik (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lee, Hyo-Yeon (Faculty of Biotechnology, Jeju National University)
  • 김우남 (제주대학교 생명자원과학대학) ;
  • 송인자 (제주대학교 아열대원예산업연구소) ;
  • 강홍규 (제주대학교 아열대원예산업연구소) ;
  • 선현진 (제주대학교 아열대원예산업연구소) ;
  • 양대화 (제주대학교 아열대원예산업연구소) ;
  • 이용억 (동국대학교 과학기술대학) ;
  • 권용익 (제주대학교 아열대원예산업연구소) ;
  • 이효연 (제주대학교 생명자원과학대학)
  • Received : 2016.12.17
  • Accepted : 2017.08.22
  • Published : 2017.09.30

Abstract

Many crops including cereals, tuber crops, feeds, and turf grasses are often damaged by various environmental stresses such as drought, salt, cold, and high temperature, causing the reduction of their productivity. Plants are sessile and cannot escape from environmental stresses. Thus, plants evolve in the direction of overcoming the environmental stresses. Some plant genes such as ARF, ABI3, NAC, HSF, and WRKY are known to respond to environmental stresses as they transcriptionally regulate the stress response pathways. For example, the OsWRKY76 gene contributes to the enhanced resistance to low temperatures and pathogenic infections. The AtWRKY28 also plays a role in environmental stresses. Zoysiagrass (Zoysia japonica Steud.) is popularly grown for gardens and golf courses. However, the function of the WRKY gene, another environmental stress-related gene, is not known in zoysiagrass. In this study, the ZjWRKY3 and ZjWRKY7 genes with one shared WRKY domain have been isolated in zoysiagrass. The expression of these genes increased in response to low temperature, drought, and salt stresses. Furthermore, the infection of the brown patch-causing Rhozoctonia solani induced the expression of ZjWRKY3 and ZjWRKY7. The corresponding proteins bind to the W-box of the Zjchi promoter, possibly regulating their transcriptions. The researchers suggest that the ZjWRKY3 and ZjWRKY7 genes transcriptionally regulate abiotic and biotic stress related downstream genes.

식용작물, 사료, 잔디를 포함하는 모든 작물은 건조, 염, 저온, 고온 등의 여러 가지 환경스트레스의 영향을 빈번히 받기 때문에 작물의 생산성이 떨어지게 된다. 식물은 환경스트레스 상황에서 스스로 벗어날 수 없다. 따라서 식물은 환경 스트레스를 극복하는 방향으로 진화하였다. ARF, ABI3, NAC, HSF, WRKY 같은 환경 스트레스에 반응하는 유전자들이 식물에서 보고되었다. 이 유전자들은 환경스트레스에 반응하는 전사인자로, 식물의 스트레스반응 경로에 연관되어 있다. OsWRKY76의 경우에는 저온 및 병원균에 대한 내성을 증가시켰고, AtWRKY28 의 경우 여러 가지 환경스트레스에 관련이 있는 것으로 보고되었다. 들잔디는 정원이나 골프코스에서 가장 흔하게 사용되는 잔디이다. 하지만 들잔디에서는 아직 WRKY 유전자가 알려지지 않았다. 본 연구에서는 들잔디로부터 1개의 WRKY domain을 포함하는 ZjWRKY3, ZjWRKY7 를 분리하였다. ZjWRKY3과 ZjWRKY7은 저온, 건조, 염 스트레스에 발현이 증가하였다. 들잔디의 갈색퍼짐병을 일으키는 R. solani의 감염이 ZjWRKY3과 ZjWRKY7의 발현을 증가시켰다. 또한 ZjWRKY3, ZjWRKY7이 Zjchi 유전자 promoter의 W-box에 결합하여 전사를 조절한다는 사실을 확인 하였다. 따라서 ZjWRKY3, ZjWRKY7 유전자는 전사인자로서 환경스트레스 및 병원균 관련 하위 유전자들을 조절할 것으로 예상된다.

Keywords

References

  1. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2):120-128 https://doi.org/10.1016/j.bbagrm.2011.09.002
  2. Clough SJ, Bent AF (1998) Floral dip: a simplified method for grobacterium-mediated transformation of Arabidopsis thaliana. The plant journal 16(6):735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  3. Dai X, Cheng X, Li Y, Tang W, Han L (2012) Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica). Biologia, 67(4):681-688
  4. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends in plant science, 5(5):199-206 https://doi.org/10.1016/S1360-1385(00)01600-9
  5. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Current opinion in plant biology, 10(4):366-371 https://doi.org/10.1016/j.pbi.2007.04.020
  6. He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC plant biology, 16(1):1 https://doi.org/10.1186/s12870-015-0700-5
  7. Kang JN, Kang HG, Sun HJ, Kwon YI, Yang DH, Ko SM, Lee HY (2016) Molecular cloning and characterization of chitinase genes from zoysiagrass (Zoysia Japonica Steud.). Plant Biotechnology Reports, 1-13
  8. Kim KN (2005) introductory turfgrass science. Sahmyook university publishing department
  9. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. Journal of plant physiology 164(8):969-979 https://doi.org/10.1016/j.jplph.2006.07.006
  10. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics 444(2):139-158 https://doi.org/10.1016/j.abb.2005.10.018
  11. Marcum KB, Engelke MC, Morton SJ, White RH (1995) Rooting Characteristics and Associated Drought Resistance of Zoysiagrasses. Agron. J. 87(3):534-538 https://doi.org/10.2134/agronj1995.00021962008700030023x
  12. Ogata T, Okada H, Kawaide, H, Takahashi H, Seo S, Mitsuhara I, Matsushita Y (2015) Involvement of NtERF3 in the cell death signalling pathway mediated by SIPK/WIPK and WRKY1 in tobacco plants. Plant Biology 17(5):962-972 https://doi.org/10.1111/plb.12349
  13. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran, S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant and cell physiology 49(6):865-879 https://doi.org/10.1093/pcp/pcn061
  14. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current opinion in plant biology 3(3):217-223 https://doi.org/10.1016/S1369-5266(00)00067-4
  15. Smirnoff N (1998) Plant resistance to environmental stress. Current opinion in Biotechnology 9(2):214-219 https://doi.org/10.1016/S0958-1669(98)80118-3
  16. Toyama K, Bae CH, Kang JG, Lim YP, Adachi T, Riu KZ, Jung WC, Shin TS, Kim BS, Im JS, Lee JH, Kim JW (2008) Efficacy of antagonistic bacteria for biological control of Rhizoctonia blight (large patch) on zoysiagrass. Research in Plant Disease 14(1):43-50 https://doi.org/10.5423/RPD.2008.14.1.043
  17. Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PloS one 8(6):e65120 https://doi.org/10.1371/journal.pone.0065120
  18. Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, Chen M (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers in plant science, 6
  19. Xie Q, Niu J, Xu X, Xu L, Zhang Y, Fan B, Han L (2015) De novo assembly of the Japanese lawngrass (Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress. Frontiers in plant science 6, 610
  20. Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Kaku H (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of experimental botany, 64(16):5085-5097 https://doi.org/10.1093/jxb/ert298
  21. Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell 13(7):1527-1540 https://doi.org/10.1105/tpc.13.7.1527
  22. Zhang YB, Sun XB, Fan B (2016). Cloning and expression of ZjNAC from Zoysia japonica[J]. Acta Prataculturae Sinica, 2016 25(4):239-245