DOI QR코드

DOI QR Code

Light-emitting mechanism varying in Si-rich-SiNx controlled by film's composition

  • Torchynska, Tetyana V. (Instituto Politecnico Nacional, ESFM) ;
  • Vega-Macotela, Leonardo G. (Instituto Politecnico Nacional, ESIME) ;
  • Khomenkova, Larysa (V. Lashkaryov Institute of Semiconductor Physics at NASU) ;
  • Slaoui, Abdelilah (ICube)
  • Received : 2016.10.22
  • Accepted : 2017.05.15
  • Published : 2017.09.25

Abstract

Spectroscopic investigation of Si quantum dots (Si-QDs) embedded in silicon nitride was performed over a broad stoichiometry range to optimize light emission. Plasma-enhanced chemical vapor deposition was used to grow the $SiN_x$ films on Si (001) substrates. The film composition was controlled via the flow ratio of silane ($SiH_4$) and ammonia ($NH_3$) in the range of R = 0.45-1.0 allowed to vary the Si excess in the range of 21-62 at.%. The films were submitted to annealing at $1100^{\circ}C$ for 30 min in nitrogen to form the Si-QDs. The properties of as-deposited and annealed films were investigated using spectroscopic ellipsometry, Fourier transform infrared spectroscopy, Raman scattering and photoluminescence (PL) methods. Si-QDs were detected in $SiN_x$ films demonstrating the increase of sizes with Si excess. The residual amorphous Si clusters were found to be present in the films grown with Si excess higher than 50 at.%. Multi-component PL spectra at 300 K in the range of 1.5-3.5 eV were detected and nonmonotonous varying total PL peak versus Si excess was revealed. To identify the different PL components, the temperature dependence of PL spectra was investigated in the range of 20-300 K. The analysis allowed concluding that the "blue-orange" emission is due to the radiative defects in a $SiN_x$ matrix, whereas the "red" and "infrared" PL bands are caused by the exciton recombination in crystalline Si-QDs and amorphous Si clusters. The nature of radiative and no radiative defects in $SiN_x$ films is discussed. The ways to control the dominant PL emission mechanisms are proposed.

Keywords

References

  1. Abdulraheem, Y., Gordon, I., Bearda, T., Meddeb, H. and Poortmans, J. (2014), "Optical bandgap of ultrathin amorphous silicon films deposited on crystalline silicon by PECVD", AIP Advances, 4(5), 057122. https://doi.org/10.1063/1.4879807
  2. Alex, V., Finkbeiner, S. and Weber, J., (1996), "Temperature dependence of the indirect energy gap in crystalline silicon", J. Appl. Phys., 79(9), 6943-6946. https://doi.org/10.1063/1.362447
  3. Anutgan, M., Anutgan, T., Atilgan, I. and Katircioglu, B. (2011), "Photoluminescence analyses of hydrogenated amorphous silicon nitride thin films", J. Lumin., 131(7), 1305-1311. https://doi.org/10.1016/j.jlumin.2011.03.014
  4. Austin, I.G., Jackson, W.A., Searle, T.M., Bhat, P.K. and Gibson, R.A. (1985), "Photoluminescence properties of a-$SiN_x$ : H alloys", Philos. Mag. B, 52(3), 271-288. https://doi.org/10.1080/13642818508240600
  5. Bandet, J., Despax, B. and Caumont, M. (1999), "Nitrogen bonding environments and local order in hydrogenated amorphous silicon nitride films studied by Raman spectroscopy", J. Appl. Phys., 85(11), 7899-7904. https://doi.org/10.1063/1.370604
  6. Belyi, V.I., Vasilyeva, L.L., Gennann, R., Ginovker, A.S., Gritsenko, V.A., Repinsky, S.M., Sinitsa, S.P., Smirnova, T.P. and Edelman, F.L. (1988), Silicon Nitride in Electronics, Materials Science, Monographs, Volume 34 , Elsevier Science Ltd., Amsterdam, Netherlands.
  7. Bommali, R.K., Singh, S.P., Rai, S., Mishra, P., Sekhar, B.R., Prakash, G.V. and Srivastava, P. (2012), "Excitation dependent photoluminescence study of Si-rich a-$SiN_x$: H thin films", J. Appl. Phys., 112(12), 123518. https://doi.org/10.1063/1.4770375
  8. Bruggeman, D.A.G. (1935), "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen", Ann. Phys., 416, 636-664. https://doi.org/10.1002/andp.19354160705
  9. Bugaev, K.O., Zelenina, A.A. and Volodin, V.A. (2012), "Vibrational spectroscopy of chemical species in silicon and silicon-rich nitride thin films", Int. J. Spectroscopy, 2012, 281851.
  10. Campbell, I.H. and Fauchet, P.M. (1986), "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors", Sol. St. Commun., 58(10), 739-741. https://doi.org/10.1016/0038-1098(86)90513-2
  11. Chen, M.J., Yen, J.L., Li, J.Y., Chang, J.F., Tsai, S.C. and Tsai, C.S. (2004), "Stimulated emission in a nanostructured silicon pn junction diode using current injection", Appl. Phys. Lett., 84(12), 2163-2165. https://doi.org/10.1063/1.1687458
  12. Cho, C.H., Kim, B.H., Kim, T.W., Park, S.J., Park, N.M. and Sung, G.Y. (2005), "Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film", Appl. Phys. Lett., 86(14), 143107. https://doi.org/10.1063/1.1894595
  13. Comedi, D., Zalloum, O.H.Y, Wojcik, J. and Mascher, P. (2006), "Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-rich Si oxide films", IEEE J. Sel. Top. Quant. Elect., 12(6), 1561-1569. https://doi.org/10.1109/JSTQE.2006.885388
  14. Conibeer, G., Green, M., Corkish, R., Cho, Y., Cho, E.C., Cho, C.W., Jiang, C.W., Fangsuwannarak, T., Pink, W., Huang, Y., Puzzer, T., Trupke, T., Richards, B., Shalav, A. and Lin, K.L. (2006), "Silicon nanostructures for third generation photovoltaic solar cells", Thin Solid Films, 511-512, 654-662. https://doi.org/10.1016/j.tsf.2005.12.119
  15. Dal Negro, L., Yi, J.H., Nguyen, V., Yi, Y., Michel, J. and Kimerling, L.C. (2005), "Spectrally enhanced light emission from aperiodic photonic structures", Appl. Phys. Lett., 86(26), 261905. https://doi.org/10.1063/1.1954897
  16. Dal Negro, L., Yi, J.H., Kimerling, L.C., Hamel, S., Williamson, A. and Galli, G. (2006), "Light emission from silicon-rich nitride nanostructures", Appl. Phys. Lett., 88(18), 183103. https://doi.org/10.1063/1.2191956
  17. Delachat, F. (2010), "Elaboration and characterization of si-licon nanoparticles in silicon nitride for photovoltaic application", Ph.D. Thesis; InESS-University of Strasbourg, Strasbourg, France.
  18. Delachat, F., Carrada, M., Ferblantier, G., Grob, J-J. and Slaoui, A. (2009), "Properties of silicon nanoparticles embedded in $SiN_x$ deposited by microwave-PECVD", Nanotechnology, 20(41), 415608. https://doi.org/10.1088/0957-4484/20/41/415608
  19. Deshpande, S.V. and Gulari, E., Brown, S.W. and Rand, S.C. (1995), "Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition", J. Appl. Phys., 77, 6534-6541. https://doi.org/10.1063/1.359062
  20. Fauchet, P.M., Ruan, J., Chen, H., Pavesi, L., Dal Negro, L., Cazzaneli, M., Elliman, R.G., Smith, N., Samoc, M. and Luther-Davies, B. (2005), "Optical gain in different silicon nanocrystal systems", Opt. Mater., 27(5), 745-749. https://doi.org/10.1016/j.optmat.2004.08.008
  21. Forouhi, A.R. and Bloomer, I. (1986), "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics", Phys. Rev. B, 34(10), 7018-7026. https://doi.org/10.1103/PhysRevB.34.7018
  22. Giorgis, F., Vinegoni, C. and Pavesi, L. (2000), "Optical absorption and photoluminescence properties of a-Si1-xNx: H films deposited by plasma-enhanced CVD", Phys. Rev. B, 61(7), 4693-4698. https://doi.org/10.1103/PhysRevB.61.4693
  23. Goncharova, L.V., Nguyen, P.H., Karner, V.L., D'Ortenzio, R., Chaudhary, S., Mokry, C.R. and Simpson, P.J. (2015), "Si quantum dots in silicon nitride: Quantum confinement and defects", J. Appl. Phys., 118(22), 224302. https://doi.org/10.1063/1.4936369
  24. Fukutani, K., Kanbe, M., Futako, W., Kaplan, B., Kamiya, T., Fortmann, C.M. and Shimizu, I. (1998), "Band gap tuning of a-Si: H from 1.55 eV to 2.10 eV by intentionally promoting structural relaxation", J. Non-Crystal. Solid., 227-230, 63-67. https://doi.org/10.1016/S0022-3093(98)00022-2
  25. Hao, H.L. and Shen, W.Z. (2008), "Identification and control of the origin of photoluminescence from silicon quantum dots", Nanotechnology, 19(45), 455704. https://doi.org/10.1088/0957-4484/19/45/455704
  26. Hao, H.L., Wu, L.K. and Shen, W.Z. (2008), "Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films", Appl. Phys. Lett., 92(12), 121922. https://doi.org/10.1063/1.2902296
  27. He, J., Wang, Ch., Li, W., Qi, K.-Ch. and Jiang, Y.-D. (2013), "Effect of gas temperature on the structural and optoelectronic properties of a-Si:H thin films deposited by PECVD", Surf. Coat. Technol., 214, 131-137. https://doi.org/10.1016/j.surfcoat.2012.11.014
  28. Hsiao, H.L., Yang, A.B. and Hwang, H.L. (2008), "Luminescence and structural properties of silicon-rich nitride by X-ray absorption spectroscopy", J. Phys. Chem. Sol., 69(2), 278-283. https://doi.org/10.1016/j.jpcs.2007.07.064
  29. HORIBA Software (2012), http://www.horiba.com/scientific/products/ellipsometers/
  30. Jelisson Jr., G.E. and Modine, F.A. (1996), "Parameterization of the optical functions of amorphous materials in the interband region", Appl. Phys. Lett., 69(3), 371-374. https://doi.org/10.1063/1.118064
  31. Jiang, C.W. and Green, M.A. (2006), "Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications", J. Appl. Phys., 99(11), 114902. https://doi.org/10.1063/1.2203394
  32. Johnson, F.A. and Loudon, R., (1964), "Critical-point analysis of the phonon spectra of diamond, silicon and germanium", Proc. R. Soc. Lond. A, 281(1385), 274-290. https://doi.org/10.1098/rspa.1964.0182
  33. Kato, H., Kashio, N., Ohki, Y., Seol, K.S. and Noma, T. (2003), "Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films", J. Appl. Phys., 93(1), 239-244. https://doi.org/10.1063/1.1529292
  34. Keita, A-S., Naciri, A.E., Delachat, F., Carrada, M., Ferblantier, G. and Slaoui, A. (2010), "Spectroscopic ellipsometry investigation of the optical properties of nanostructured Si/SiNx films", J. Appl. Phys., 107(9), 093516. https://doi.org/10.1063/1.3331551
  35. Khomenkova, L., Korsunska, N., Sheinkman, M., Stara, T., Torchynska, T.V. and Vivas Hernandez, A. (2005), "Radiative channel competition in silicon nanocrystallites", J. Lumin., 115(3), 117-121. https://doi.org/10.1016/j.jlumin.2005.02.014
  36. Khomenkova, L. Gourbilleau, F., Cardin, J., Jambois, O., Garrido, B. and Rizk, R. (2009), "Long lifetime and efficient emission from $Er^{3+}$ ions coupled to Si nanoclusters in Si-rich $SiO_2$ layers", J. Lumin., 129(12), 1519-1523. https://doi.org/10.1016/j.jlumin.2009.01.030
  37. Khomenkova, L., Cardin, J., Portier, X. and Gourbilleau, F. (2010), "Thermal stability of high-k Si-rich $HfO_2$ layers grown by RF magnetron sputtering", Nanotechnology, 21(28), 285707. https://doi.org/10.1088/0957-4484/21/28/285707
  38. Kim, T.Y., Park, N.M., Kim, K.H., Sunga, G.Y., Ok, Y.W., Seong, T.Y. and Choi, C.J. (2004), "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films", Appl. Phys. Lett., 85(22), 5355-5357. https://doi.org/10.1063/1.1814429
  39. Kim, B.H., Cho, C.H., Kim, T.W., Park, N.M., Sung, G.Y. and Park, S.J. (2005), "Photoluminescence of silicon quantum dots in silicon nitride grown by $NH_3$ and $SiH_4$", Appl. Phys. Lett., 86(9), 091908. https://doi.org/10.1063/1.1872211
  40. Kim, T.W., Cho, C.H., Kim, B.H. and Park, S.J. (2006), "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using $SiH_4$ and $NH_3$", Appl. Phys.Lett., 88(12), 123102. https://doi.org/10.1063/1.2187434
  41. Kistner, J., Chen, X., Weng, Y., Strunk, H.P., Schubert, M.B. and Werner, J.H. (2011), "Photoluminescence from silicon nitride - no quantum effect", J. Appl. Phys., 110(2), 023520. https://doi.org/10.1063/1.3607975
  42. Korsunska, N., Bulakh, B., Jumayev, B., Khomenkova, L., Yukhymchuk, V. and Torchynska, T. (2005), "Raman scattering characterization of macro- and nanoporous silicon", Appl. Surf. Sci., 243(1), 30-35. https://doi.org/10.1016/j.apsusc.2004.06.151
  43. Korsunskaya, N.E., Torchinskaya, T.V., Khomenkova, L.Yu., Dzhumaev, B.R. and Prokes, S.M., (2000), "Suboxide-related centre as the source of the intense red luminescence of porous Si", Microelec. Eng., 51-52, 485-493. https://doi.org/10.1016/S0167-9317(99)00503-1
  44. Lan, Sh.M., Huang, Y.Ch., Liao, S.M., Li, Zh.Y., Yang, T.N., Ku, Ch.T., Chen, M.Ch. and Huang, Y.H. (2009), "Luminescence mechanisms of silicon-rich nitride films fabricated by atmospheric pressure chemical vapor deposition in $N_2$ and $H_2$ atmospheres", J. Appl. Phys., 105(5), 053107. https://doi.org/10.1063/1.3086620
  45. Mackel, H. and Ludemann, R. (2001), "Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation", J. Appl. Phys., 92(5), 2602-2609. https://doi.org/10.1063/1.1495529
  46. Mercaldo, L.V., Esposito, E.M., Veneri, P.D., Fameli, G., Mirabella, S. and Nicotra, G. (2010), "First and second-order Raman scattering in Si nanostructures within silicon nitride", Appl. Phys. Lett., 97(15), 153112. https://doi.org/10.1063/1.3501133
  47. Mo, C.M., Zhang, L.D., Xie, C.Y. and Wang, T. (1993), "Luminescence of nanometer-sized amorphous silicon nitride solids", J. Appl. Phys., 73(10), 5185-5189. https://doi.org/10.1063/1.353796
  48. Molinari, M., Rinnert, H. and Vergnat, M. (2007), "Evolution with the annealing treatments of the photoluminescence mechanisms in a-$SiN_x$: H alloys prepared by reactive evaporation", J. Appl. Phys., 101(12), 123532. https://doi.org/10.1063/1.2749283
  49. Muraki, N., Katagiri G., Sergo, V., Pezzotti, G. and Nishida, T. (1997), "Mapping of residual stresses around an indentation in ${\beta}$-Si3N4 using Raman spectroscopy", J. Mater. Sci., 32(20), 5419-5423. https://doi.org/10.1023/A:1018639516582
  50. Nalini, R.P., Khomenkova, L., Debieu, O., Cardin, J., Dufour, C., Carrada, M. and Gourbilleau, F. (2012), "SiOx/SiNy multilayers for photovoltaic and photonic applications", Nanoscale Res. Lett., 7(1), 124. https://doi.org/10.1186/1556-276X-7-124
  51. Park, N.M., Choi, C.J., Seong, T.Y. and Park, S.J. (2001a), "Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride", Phys. Rev. Lett., 86(7), 1355-1357. https://doi.org/10.1103/PhysRevLett.86.1355
  52. Park, N.M., Kim, T.S. and Park, S.J. (2001b), "Band gap engineering of amorphous silicon quantum dots for light-emitting diodes", Appl. Phys. Lett., 78(17), 2575-2577. https://doi.org/10.1063/1.1367277
  53. Pavesi, L. and Lockwood, D.J. (2004), Silicon Photonics, Springer-Verlag Berlin, Heidelberg, Germany.
  54. Philipp, H.R. (1973), "Optical properties of silicon nitride", J. Electrochem. Soc., 120(2), 295-300. https://doi.org/10.1149/1.2403440
  55. Priolo, F., Franzo, G., Pacifici, D., Vinciguerra, V., Iacona, F. and Irrera, A. (2001), "Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals", J. Appl. Phys., 89(1), 264-272. https://doi.org/10.1063/1.1331074
  56. Richter, H., Wang, Z.P. and Ley, L. (1981), "The one phonon Raman spectrum in microcrystalline silicon", Sol. St. Commun., 39(5), 625-629. https://doi.org/10.1016/0038-1098(81)90337-9
  57. Rodriguez, A., Arenas, J. and Alonso, J.C. (2012), "Photoluminescence mechanisms in silicon quantum dots embedded in nanometric chlorinated-silicon nitride, films", J. Lumin., 132(9), 2385-2389. https://doi.org/10.1016/j.jlumin.2012.04.007
  58. Rodriguez-Gomez, A., Garcia-Valenzuela, A., Haro-Poniatowski, E. and Alonso-Huitron, J.C. (2013), "Effect of thickness on the photoluminescence of silicon quantum dots embedded in silicon nitride films", J. Appl. Phys., 113(23), 233102. https://doi.org/10.1063/1.4811361
  59. Rui, Y., Chen, D., Xu, J., Zhang, Y., Yang, L., Mei, J., Ma, Z., Cen, Z, Li, W., Xu, L., Huang, X. abd Chen, K. (2005), "Hydrogen-induced recovery of photoluminescence from annealed a-Si: H/a-$SiO_2$ multilayers", J. Appl. Phys., 98(3), 033532. https://doi.org/10.1063/1.2001747
  60. Sahu, B.S., Delachat, F., Slaoui, A., Carrada, M., Ferblantier, G. and Muller, D. (2011) "Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich $SiN_x$: H films", Nanoscale Res. Lett., 6(1), 178. https://doi.org/10.1186/1556-276X-6-178
  61. Sain, B. and Das, D. (2013), "Tunable photoluminescence from nc-Si/a-SiNx: H quantum dot thin films prepared by ICP-CVD", Phys. Chem. Chem. Phys., 15(11), 3881-3888. https://doi.org/10.1039/c3cp43875a
  62. Scardera, G., Puzzer, T., Perez-Wurfl, I. and Conibeer, G. (2008), "The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures", J. Cryst. Growth, 310(15), 3680-3684. https://doi.org/10.1016/j.jcrysgro.2008.05.018
  63. Sergo, V., Pezzotti, G., Katagiri, G., Muraki, N. and Nishida, T. (1996), "Stress dependence of the raman spectrum of ${\beta}$-silicon nitride", J. Am. Ceram. Soc., 79(3), 781-784. https://doi.org/10.1111/j.1151-2916.1996.tb07944.x
  64. Sung, G.Y., Park, N.M., Shin, J.H., Kim, K.H., Kim, T.Y., Cho, K.S. and Huh, C. (2006), "Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes", IEEE J. Sel. Top. Quant. Elect., 12(6), 1545-1555. https://doi.org/10.1109/JSTQE.2006.885391
  65. Temple, P.A. and Hathaway, C.E. (1973), "Multiphonon raman spectrum of silicon", Phys. Rev. B, 7(8), 3685-3696. https://doi.org/10.1103/PhysRevB.7.3685
  66. Tomar, V.K., Patil, L.S. and Guatam, D.K. (2008), "Deposition and characterization of silicon nitride films using HMDS for photonics applications", J. Optoelectron. Adv. Mater., 10(10), 2657-2662.
  67. Torchynska, T.V. (2010), "Nanocrystals and quantum dots. Some physical aspects", In: Nanocrystals and Quantum Dots of Group IV Semiconductors, (T.V. Torchynska, Yu Vorobiev Eds.), American Scientific Publisher, Stevenson Ranch, CA, USA.
  68. Torchynska, T.V., Korsunska, N.E., Dzhumaev, B.R. and Khomenkova, L.Yu. (2000a), "Three approaches to surface substance role investigation in porous silicon photoluminescence and its excitation", J. Phys. Chem. Solid, 61(6), 937-941. https://doi.org/10.1016/S0022-3697(99)00393-5
  69. Torchynska, T.V., Palacios Gomez, J., Polupan, G.P., Garcia Borquez, A., Korsunskaya, N.E. and Khomenkova, L.Yu. (2000b), "Complex nature of the red photoluminescence band and peculiarities of its excitation in porous silicon", Appl. Surf. Sci., 167(3), 197-204. https://doi.org/10.1016/S0169-4332(00)00529-8
  70. Torchynska, T.V., Cas,s Espinola, J.L., Vergara Hernandez, E., Khomenkova, L., Delachat, F. and Slaoui, A. (2015a), "Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties", Thin Solid Films, 581, 65-69. https://doi.org/10.1016/j.tsf.2014.11.070
  71. Torchynska, T.V., Casas Espinola, J.L., Khomenkova, L., Vergara Hernandez, E., Andraca Adame, J.A. and Slaoui, A. (2015b), "Structural and light emitting properties of silicon-rich silicon nitride films grown by plasma enhanced-chemical vapor deposition", Mater. Sci. Semicond. Proces., 37, 46-50. https://doi.org/10.1016/j.mssp.2015.01.018
  72. Tsu, D.V., Lucovsky, G. and Mantini, M.J. (1986), "Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition", Phys. Rev. B, 33(10), 7069-7074. https://doi.org/10.1103/PhysRevB.33.7069
  73. Walters, R.J., Bourianoff, G.I. and Atwater, H.A. (2005), "Field-effect electroluminescence in silicon nanocrystals", Nat. Mater., 4(2), 143-146. https://doi.org/10.1038/nmat1307
  74. Wang, Y.Q., Wang, Y.G., Cao, L. and Cao, Z.X. (2003), "High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride", Appl. Phys. Lett., 83(17), 3474-3476. https://doi.org/10.1063/1.1621462
  75. Wang, M., Li, D., Yuan, Zh., Yang, D. and Que, D. (2007), "Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters", Appl. Phys. Lett., 90(13), 131903. https://doi.org/10.1063/1.2717014
  76. Warren, W.I., Lenahan, P.M. and Curry, S.E. (1990), "First observation of paramagnetic nitrogen danglingbond centers in silicon nitride", Phys. Rev. Lett., 65(2), 207-210. https://doi.org/10.1103/PhysRevLett.65.207
  77. Wenge, D., Wenhao, Q.I., Wanbing, L.U., Zicai, Zh., Wei, Y.U. and Guangsheng, F.U. (2008), "Influence of annealing environment on the Hydrogen related bonding structure in silicon nitride thin films containing silicon nanoparticles", Proceedings of SPIE, Volume 7135, 71353X-1.
  78. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G. and Delerue, C. (1999), "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen", Phys. Rev. Lett., 82(1), 197-200. https://doi.org/10.1103/PhysRevLett.82.197
  79. Zeng, X., Liao, W., Wen, G., Wen, X. and Zheng, W. (2014), "Structural evolution and photoluminescence of annealed Si-rich nitride with Si quantum dots prepared by plasma enhanced chemical vapor deposition", J. Appl. Phys., 115(15), 154314. https://doi.org/10.1063/1.4872321