DOI QR코드

DOI QR Code

Relationship of Resistance to Benzimidazole Fungicides with Mutation of β-Tubulin Gene in Venturia nashicola

Benzimidazole계 살균제에 대한 배 검은별무늬병균 Venturia nashicola 의 저항성과 β-Tubulin 유전자 돌연변이와의 관계

  • Kwak, Yeonsoo (Department of Plant Medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Min, Jiyoung (Department of Plant Medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Song, Janghoon (Pear Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Myeongsoo (Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Hanchan (Department of Fruit Science, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Heung Tae (Department of Plant Medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University)
  • 곽연수 (충북대학교 농업생명환경대학 식물의학과) ;
  • 민지영 (충북대학교 농업생명환경대학 식물의학과) ;
  • 송장훈 (농촌진흥청 국립원예특작과학원 배연구소) ;
  • 김명수 (농촌진흥청 국립원예특작과학원 사과연구소) ;
  • 이한찬 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김흥태 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2017.01.18
  • Accepted : 2017.05.02
  • Published : 2017.06.30

Abstract

Pear scab caused by Venturia nashicola has been reported as an important disease of pear resulting in lowering the quality of pear fruits. In this study, it was conducted to investigate the relationship between resistance of V. nashicola and mutation of ${\beta}$-tubulin gene and the fungicide resistance in field isolate group in benzimidazole fungicides. Responce of V. nashicola to carbendazim could be classified into 3 groups as sensitive that does not grow at all on PDA amended with $0.16{\mu}g/ml$ of carbendazim, low resistance that could not grow in $4.0{\mu}g/ml$ medium, and high resistance that can grow even at $100{\mu}g/ml$. Thirty isolates of V. nashicola collected from 3 regions as Wonju, Naju, and Okcheon were highly resistant to carbendazim. Analysis of the nucleotide sequence of ${\beta}$-tubulin gene of V. nashicola showed that there was no difference in the nucleotide sequence between the sensitive and the low-resistant isolate, but GAG at codon 198 (glutamic acid) was replaced with GCG (alanine) in the high-resistant isolate. Among 10 isolates obtained from the Okcheon, 5 isolates showed the substitution of glycine for glutamic acid, which were resistant to carbendazim, but more sensitive to the mixture of carbendazim and diethofencarb than others. Through these results, all isolates of V. nashicola isolated in pear orchard were found to be resistant to benzimidazoles. Also, mutants E198A and E198G at ${\beta}$-tubulin were found to be important mechanisms of V. nashicola resistance against benzimidazole fungicides.

Benzimidazole계 살균제 저항성을 모니터링하면서, 저항성과 ${\beta}$-tubulin 유전자의 198번째 코돈의 돌연변이와의 관계를 조사하였다. Venturia nashicola의 benzimidazole계 살균제에 대한 반응은 $0.16{\mu}g/ml$ carbendazim 배지에서 전혀 생장하지 못하는 감수성과 $4.0{\mu}g/ml$ 배지에서 생장이 안 되는 저저항성, $100{\mu}g/ml$에서조차 생장이 가능한 고저항성으로 구분할 수 있었다. 국내 3개 지역의 과원에서 채집한 30균주의 V. nashicola는 carbendazim에 대해서 모두 고저항성이었다. V. nashicola의 ${\beta}$-tubulin 유전자의 염기서열을 분석한 결과 저저항성 균주에서는 감수성 균주와 염기서열에 차이가 없었지만, 고저항성 균주는 GAG인 glutamic acid가 GCG인 alanine으로 치환되어 있었다. 옥천의 과원에서 분리한 10균주 중에서 5균주는 GGG인 glycine으로 치환되어 있었다. 특히 glycine으로 치환될 경우 carbendazim에 대해서 저항성이 되면서 carbendazim과 diethofencarb 혼합제에 대해서는 감수성이 더 커졌다. 결국 ${\beta}$-tubulin의 198번째 코돈의 돌연변이 E198A와 E198G는 V. nashicola가 benzimidazole계 살균제에 대해서 저항성이 되는 중요한 기작임을 알 수 있었다.

Keywords

References

  1. Albertini, C., Gredt, M. and Leroux, P. 1999. Mutations of the $\beta$-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic. Biochem. Physiol. 64: 17-31. https://doi.org/10.1006/pest.1999.2406
  2. Baraldi, E., Mari, M., Chierici, E., Pondrelli, M., Bertolini, P. and Pratella, G. C. 2003. Studies on thiabendazole resistance of Penicillium expansum of pears: pathogenic fitness and genetic characterization. Plant Pathol. 52: 362-370. https://doi.org/10.1046/j.1365-3059.2003.00861.x
  3. Bradley, C. A., Lamey, H. A., Endres, G. J., Henson, R. A., Hanson, B. K., McKay, K. R., Halvorson, M., LeGare, D. G. and Porter, P. M. 2006. Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant Dis. 90: 1129-1134. https://doi.org/10.1094/PD-90-1129
  4. Chen, S. N., Shang, Y., Wang, Y., Schnabel, G., Lin, Y., Yin, L. F. and Luo, C. X. 2014. Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin. Plant Dis. 98: 1555-1560. https://doi.org/10.1094/PDIS-11-13-1145-RE
  5. Chung, W. H., Chung, W. C., Peng, M. T., Yang, H. R. and Huang, J. W. 2010. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotech. 27: 17-24. https://doi.org/10.1016/j.nbt.2009.10.004
  6. Davidse, L. C. and Flach, W. 1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell Biol. 72: 174-193. https://doi.org/10.1083/jcb.72.1.174
  7. Davidson, R. M., Hanson, L. E., Franc, G. D. and Panella, L. 2006. Analysis of $\beta$-tubulin gene fragments from benzimidazole sensitive and tolerant Cercospora beticola. J. Phytopathol. 154: 321-328. https://doi.org/10.1111/j.1439-0434.2006.01080.x
  8. Elad, Y., Shabi, E. and Katan, T. 1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and control of Botrytis cinerea on grape. Plant Pathol. 37: 141-147. https://doi.org/10.1111/j.1365-3059.1988.tb02206.x
  9. Hartill, W. F. T. 1986. Resistance of plant pathogens to fungicides in New Zealand. N. Z. J. Exp. Agric. 14: 239-245.
  10. Hwang, S. Y., Kim, H. R., Kim, J. H., Park, J. H., Lee, S. B., Cheong, S. R. and Kim, H. T. 2010. Sensitivity of Colletotrichum spp. isolated from grapes in Korea to carbendazim and the mixture of carbendazim plus diethofencarb. Plant Pathol. J. 26: 49-56. https://doi.org/10.5423/PPJ.2010.26.1.049
  11. Ishii, H. and Takeda, H. 1989. Differential binding of a N-phenylformamidoxime compound in cell-free extracts of benzimidazoleresistant and-sensitive isolates of Venturia nashicola, Botrytis cinerea and Gibberella fujikuroi. Neth. J. Plant Pathol. 95(Suppl 1): 99-108. https://doi.org/10.1007/BF01974289
  12. Ishii, H. and Yamaguchi, A. 1977. Tolerance of Venturia nashicola to thiophanate-methyl and benomyl in Japan. Ann. Phytopathol. Soc. Jpn. 43: 557-561. https://doi.org/10.3186/jjphytopath.43.557
  13. Jones, A. L. and Walker, R. J. 1976. Tolerance of Venturia inaequalis to dodine and benzimidazole fungicides in Michigan. Plant Dis. Report. 60: 40-44.
  14. Jung, M. K., Wilder, I. B. and Oakley, B. R. 1992. Amino acid alterations in the benA ($\beta$-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil. Cytoskeleton 22: 170-174. https://doi.org/10.1002/cm.970220304
  15. Kang, B. K., Min, J. Y., Kim, Y. S., Park, S. W., Van Bach, N. and Kim, H. T. 2005. Semi-selective medium for monitoring Colletotrichum acutatum causing pepper anthracnose in the field. Res. Plant Dis. 11: 21-27. (In Korean) https://doi.org/10.5423/RPD.2005.11.1.021
  16. Kim, J. H., Min, J. Y., Bae, Y. S. and Kim, H. T. 2009. Molecular analysis of Botrytis cinerea causing ginseng grey mold resistant to carbendazim and the mixture of carbendazin plus diethofencarb. Plant Pathol. J. 25: 322-327. https://doi.org/10.5423/PPJ.2009.25.4.322
  17. Koenraadt, H., Somerville, S. C. and Jones, A. L. 1992. Characterization of mutations in the beta-tubulin gene of benomylresistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82: 1348-1354. https://doi.org/10.1094/Phyto-82-1348
  18. Kwon, S. M., Yeo, M. I., Choi, S. H., Kim, K. W., Jun, K. J. and Uhm, J. Y. 2010. Reduced sensitivities of the pear scab fungus (Venturia nashicola) collected in Ulsan and Naju to five ergosterolbiosynthesis- inhibiting fungicides. Res. Plant Dis. 16: 48-58. (In Korean) https://doi.org/10.5423/RPD.2010.16.1.048
  19. Ma, Z. and Michailides, T. J. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 24: 853-863. https://doi.org/10.1016/j.cropro.2005.01.011
  20. Ma, Z., Yoshimura, M. A. and Michailides, T. J. 2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Microbiol. 69: 7145-7152. https://doi.org/10.1128/AEM.69.12.7145-7152.2003
  21. Martin, R. J. 1997. Modes of action of anthelmintic drugs. Vet. J. 154: 11-34. https://doi.org/10.1016/S1090-0233(05)80005-X
  22. McKay, G. J., Egan, D., Morris, E. and Brown, A. E. 1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycol. Res. 102: 671-676. https://doi.org/10.1017/S095375629700542X
  23. Pappas, A. C. 1997. Evolution of fungicide resistance in Botrytis cinerea in protected crops in Greece. Crop Prot. 16: 257-263. https://doi.org/10.1016/S0261-2194(96)00096-8
  24. Qiu, J., Xu, J., Yu, J., Bi, C., Chen, C. and Zhou, M. 2011. Localization of the benzimidazole fungicide binding site of Gibberella zeae $\beta$2-tubulin studied by site-directed mutagenesis. Pest Manag. Sci. 67: 191-198. https://doi.org/10.1002/ps.2050
  25. Quello, K. L., Chapman, K. S. and Beckerman, J. L. 2010. In situ detection of benzimidazole resistance in field isolates of Venturia inaequalis in Indiana. Plant Dis. 94: 744-750. https://doi.org/10.1094/PDIS-94-6-0744
  26. Ross, R. G. and Newberry, R. J. 1985. Tolerance to benomyl of Venturia inaequalis in Nova Scotia. Can. J. Plant Pathol. 7: 435-437. https://doi.org/10.1080/07060668509501675
  27. Sedlakova, B. and Lebeda, A. 2008. Fungicide resistance in Czech populations of cucurbit powdery mildews. Phytoparasitica. 36: 272-289. https://doi.org/10.1007/BF02980774
  28. Trkulja, N., Ivanovic, Z., Pfaf-Dolovac, E., Dolovac, N., Mitrovic, M., Tosevski, I. and Jovic, J. 2013. Charateisation of benzimidazole resistance of Cercospora beticola in Sebia using PCR-based detection of resistance-associated mutations of the $\beta$-tubulin gene. Eur. J. Plant Pathol. 135: 889. https://doi.org/10.1007/s10658-012-0135-x
  29. Yarden, O. and Katan, T. 1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83: 1478-1483. https://doi.org/10.1094/Phyto-83-1478
  30. Yin, Y. N. and Xiao, C. L. 2013. Molecula characterization and a multiplex allele-specific PCR method for detection of thiabendazole resistance in Penicillium expansum from apple. Eur. J. Plant Pathol. 136: 703-713. https://doi.org/10.1007/s10658-013-0199-2
  31. Zhan, R. and Huang, J. 2007. Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China. Afr. J. Biotech. 6: 143-147.