DOI QR코드

DOI QR Code

POD와 DMD를 이용한 와류형 분사기의 극저온 질소 분무 동적 특성 분석

Dynamic Characteristics Analysis of the Cryogenic Nitrogen Injection of Swirl Injector using POD and DMD

  • Kang, Jeongseok (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sohn, Chae Hoon (Department of Mechanical Engineering, Sejong University)
  • 투고 : 2017.02.06
  • 심사 : 2017.04.18
  • 발행 : 2017.10.01

초록

초임계 환경에서 와류형 분사기의 극저온 질소 분무 동적 특성 분석을 위하여 3차원 LES 난류 모델을 적용하였다. 초임계 상태에서 질소의 상태량들을 정확하게 예측하기 위해 SRK 실기체 상태방정식을 사용하였고, 점성계수와 열전도도는 Chung의 고압 상태 혼합물에 대한 방정식, 그리고 확산 계수는 Fuller의 이론에 Takahashi의 보정식을 적용하였다. 질소 분무 결과, 분사기 내, 외부에서 유동장과 음향장 사이의 상호작용으로 복잡한 유동구조가 형성된다. 복잡한 유동 현상을 분석하기 위해 FFT, POD 그리고 DMD 기법을 적용하여 해석을 수행하였다. FFT 해석을 수행하여 분사기 내, 외부에서 나타나는 특정 주파수를 파악하였으며, POD와 DMD를 통해 각 주파수가 어떠한 유동 구조를 갖는지에 대한 연구를 수행하였다. 또한, DMD를 통해 각 주파수의 감쇠 계수를 파악하여 이를 실험 결과와 비교하였다.

The cryogenic nitrogen spray of a swirl injector has been numerically investigated using three dimensional LES turbulence model to analyze the dynamic characteristics under supercritical condition. To predict the precise nitrogen properties under supercritical condition, SRK equation of state, Chung's method for viscosity and thermal conductivity and Takahashi's correlation based on Fuller's theory for diffusion coefficient are implemented. The complex flow structures due to interaction between flow field and acoustic field are observed inside and outside the injector under supercritical condition. FFT, POD, and DMD techniques are employed to understand the coherent structures. By implementing the FFT, the dominant frequencies are identified inside and outside the injector. The coherent flow structures related to the dominant frequencies are visualized using the POD and DMD techniques. In addition, the DMD provides the damping coefficient which is related with the instability prediction.

키워드

참고문헌

  1. Culick, F.E.C. and Yang, V., "Overview of Combustion Instabilities. In: liquid-propellant Rocket Engines," AIAA, pp. 3-37, 1995.
  2. Bazarov, V.G., Yang, V. and Puneesh, P., "Design and Dynamics of Jet and Swirl Injectors In: Liquid Rocket Thrust Chambers: Aspect of Modeling, Analysis, and Design," Progress in Astronautics and Aeronautics, 2004.
  3. Heo, J.Y., Hong, J.S. and Sung, H.G., "Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition," International Journal of Aeronautical and Space Sciences, Vol. 16, No. 2, pp. 254-263, 2015. https://doi.org/10.5139/IJASS.2015.16.2.254
  4. Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion, 2th ed., R.T. Edwards Inc., Philadelphia, P.A., U.S.A., 2005.
  5. Germano, M., Piomelli, U., Moin, P. and Cabot, W., "A Dynamic Subgrid-scale Eddy Viscosity Model," Physics of Fluid, Vol. 3, No. 7, pp. 1760-1765, 1991. https://doi.org/10.1063/1.857955
  6. Kang, J.S., Heo, J.Y., Sung, H.G. and Yoon, Y.B., "LES Investigation on The Cryogenic Nitrogen Injection of Swirl Injector Under Supercritical Environment," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 4, pp. 343-351, 2016. https://doi.org/10.5139/JKSAS.2016.44.4.343
  7. Soave, G., "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chemical Engineering Science, Vol. 27, No. 6, pp. 1197-1203, 1972. https://doi.org/10.1016/0009-2509(72)80096-4
  8. Chung, T., Ajlan, M., Lee, L. and Starling, K., "Generallized Multi-Parameter Corresponding State Correlation for Ployatomic, Polar Fluid Transport Properties," Industrial and Chemical Engineering Research, Vol. 27, No. 4, pp. 671-679 1988. https://doi.org/10.1021/ie00076a024
  9. Takahashi, S., "Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures," Journal of Chemical Engineering, Vol. 7, pp. 417-420, 1974.
  10. Sung, H.G., Yeom, H.W., Yoon, S.K., Kim, S.J. and Kim, J.G., "Investigation of Rocket Exhaust Diffusers for Altitude Simulation," Journal of Propulsion and Power, Vol. 26, No. 2, pp. 240-247, 2010. https://doi.org/10.2514/1.46226
  11. Meng, H. and Yang, V., "A Unified Treatment of General Fluid Thermodynamics and its Application to a Preconditioning Scheme," Journal of Computational Physics, Vol. 189, No. 1, pp. 277-304, 2003. https://doi.org/10.1016/S0021-9991(03)00211-0
  12. Kim, J.C., Yoo, K.H. and Sung, H.G., "Large-eddy Simulation and Acoustic Analysis of a Turbulent Flow Field in a Swirl-stabilized Combustor," Journal of Mechanical Science and Technology, Vol. 25, No. 10, pp. 2703-2710, 2011. https://doi.org/10.1007/s12206-011-0741-0
  13. Kim, K.J., Heo, J.Y. and Sung, H.G., "Study on Thermophysical Property Characteristics of a 4 Species Kerosene Surrogate in a Swirl Injector at Supercritical Pressure Condition," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 6, pp. 45-58, 2013.
  14. Yoo, K.H., Kim, J.C. and Sung, H.G., "Effects of Cooling Flow on the Flow Structure and Acoustic Oscillation in a Swirl-stabilized Combustor, Part I. Flow Characteristics," Journal of Visualization, Vol. 16, pp. 287-295, 2013. https://doi.org/10.1007/s12650-013-0177-y
  15. Sung, H.G., Yoo, K.H. and Kim, J.C., "Effects of Cooling Flow on the Flow Structure and Acoustic Oscillation in a Swirl-stabilized Combustor, Part II. Acoustic Analysis," Journal of Visualization, Vol. 17, No. 1, pp. 69-76, 2014. https://doi.org/10.1007/s12650-013-0193-y
  16. Schmid, P.J, "Application of the Dynamic Mode Decomposition to Experimental Data," Experiments in Fluid, Vol. 50, No. 4, pp. 1123-1130, 2011. https://doi.org/10.1007/s00348-010-0911-3
  17. Jourdain. G., Eriksson. L., Kim. S.H. and Sohn, C.H., "A Study on Quantification of Acoustic Amplification Using Dynamic Mode Decomposition Method," 38th The Korea Society of Propulsioin Engineer Spring conference, Gumi, Korea, pp. 364-366, Apr. 2012.
  18. Cho, S.H., Kim, H.S., Yoon Y.B. and Sung, H.G., "Dynamic Characteristics of a Cryogenic Swirl Flow Under Supercritical Conditions," Aerospace Science and Technology, Vol. 51, pp. 162-170, 2016. https://doi.org/10.1016/j.ast.2016.02.008