DOI QR코드

DOI QR Code

A Distinctive Chemical Composition of the Tektites from Thailand and Vietnam, and Its Geochemical Significance

타이와 베트남에서 수집된 텍타이트의 화학조성과 지구화학적 의의

  • Lee, Seung-Gu (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Tanaka, Tsuyoshi (Institute for Space-Earth Environmental Research, Nagoya University) ;
  • Asahara, Yoshihiro (Department of Earth and Planetary Sciences, Nagoya University) ;
  • Minami, Masayo (Institute for Space-Earth Environmental Research, Nagoya University)
  • 이승구 (한국지질자원연구원 국토지질연구본부) ;
  • ;
  • ;
  • Received : 2017.07.17
  • Accepted : 2017.09.08
  • Published : 2017.09.30

Abstract

We determined chemical compositions like abundance of major and trace elements, Sr and Nd isotope compositions for two tektites from the Thailand and Vietnam. Their chemical compositions are similar to each other, and seem to be similar to those of PAAS (Post Archean Australian Shale) rather than upper continental crust. In particular, primitive mantle-normalized spider diagrams and chondrite-normalized REE patterns for two tektites are the same, suggesting that they might be derived from the same source material. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are $0.718870{\pm}0.000008(2{\sigma}_m)$ and $0.512024{\pm}0.000012(2{\sigma}_m)$, respectively, and those from Vietnam are $0.717022{\pm}0.000008(2{\sigma}_m)$ and $0.511986{\pm}0.000013(2{\sigma}_m)$, respectively. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are slightly enriched than those of Vietnam tektite. $^{87}Sr/^{86}Sr$ ratios from the Vietnam and Thai tektites were plotted on the range of Australasian tektites reported previously. $^{143}Nd/^{144}Nd$ ratio of Vietnam tektite from this study was lower than the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite reported previously whereas that of Thai tektite was included in the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite. The geochemical characteristics from two tektites in this study indicate that they may be derived from the very similar source materials.

타이와 베트남산 텍타이트의 주원소 조성, 희토류원소를 포함하는 미량원소 조성, Sr과 Nd의 동위원소 화학조성을 측정하여 상호간의 연관성을 비교하였다. 두 텍타이트의 주원소 조성은 서로 유사하며, 상부지각의 화학조성보다는 PAAS(Post Archean Australian Shale)의 화학조성에 더 유사하다. 거미도와 희토류원소의 분포도는 서로 간에 일치하는 특성을 보여주며, Eu의 부(-)의 이상과 더불어 경희토류가 부화되고 중희토류가 결핍되어 있는 특성 또한 PASS의 희토류원소 분포도와 유사하다. 타이산 텍타이트의 $^{87}Sr/^{86}Sr$$^{143}Nd/^{144}Nd$ 비는 각각 $0.718870{\pm}0.000008(2{\sigma}_m)$, $0.512024{\pm}0.000012(2{\sigma}_m)$이고 베트남산 텍타이트의 $^{87}Sr/^{86}Sr$$^{143}Nd/^{144}Nd$ 비는 $0.717022{\pm}0.000008(2{\sigma}_m)$. $0.511986{\pm}0.000013(2{\sigma}_m)$으로 타이산 텍타이트가 베트남산 텍타이트보다 더 부화된 동위원소 값을 갖고 있다. 그리고 현재까지 알려진 오스트레일리아와 동아시아에서의 텍타이트의 $^{87}Sr/^{86}Sr$$^{143}Nd/^{144}Nd$ 비와 비교했을 때, 이 연구에서의 두 지역 텍타이트의 $^{87}Sr/^{86}Sr$비 값은 모두 기존에 알려져 있는 Australasian 텍타이트에서의 값들의 범위에 포함된다. $^{143}Nd/^{144}Nd$ 비의 경우 타이산 텍타이트는 현재 알려져있는 Australasian 텍타이트의 $^{143}Nd/^{144}Nd$비 값 범위에 들어가는 반면에, 베트남산 텍타이트의 $^{143}Nd/^{144}Nd$비 값은 현재까지 알려진 $^{143}Nd/^{144}Nd$ 비보다 낮았다. 이 연구에서의 두 텍타이트의 지구화학적 특성의 유사성은 두 텍타이트가 거의 동일한 기원물질로부터 유래되었을 가능성을 지시해준다.

Keywords

References

  1. Amare, K., Koeberl, C., 2006, Variation of chemical composition in Australasian tektites from different localities in Vietnam. Meteoritics & Planetary Science, 41, 107-123. https://doi.org/10.1111/j.1945-5100.2006.tb00196.x
  2. Asahara, Y., Lee, S-G., Minami, M., Choi, J., Nagao, K., Tanaka, K., 2017, Age comparison between Matuyama-Brunhes geomagnetic polarity reversal and tektite fall. The Nagoya University Bulletin of Chronological Research, 1, 72-77 with English abstract.
  3. Blum, J. D., Papanastassiou, D. A., Koeberl, C. and Wasserburg, G. J., 1992, Nd and Sr isotopic study of Australasian tektites: New constraints on the provenance and age of target material. Geochimica et Cosmochimica Acta, 56, 483-492. https://doi.org/10.1016/0016-7037(92)90146-A
  4. Compston, W. and Chapman, D. R., 1969, Sr isotope pattern within the Southeast Australasian strewn field. Geochimica et Cosmochimica Acta, 33, 1023-1036. https://doi.org/10.1016/0016-7037(69)90058-1
  5. Futrell, D. S., 2000, Tektite controversy. Meteorite, 6, 36-37.
  6. Gao, S., Luo, T-C., Zhang, B-R., Zhang, H-F., Han, Y-W., Zhao, -D., Hu, Y-K., 1998, Chemical composition of the continental crust as revealed by studies in East China, Geochimica et Cosmochimica Acta, 62, 1959-1975. https://doi.org/10.1016/S0016-7037(98)00121-5
  7. Gentner, W., Kleinmann, B. and Wagner, G. A., 1967, New K-Ar and fission track ages for impact glasses and tektites. Earth & Planetary Science Letter, 2. 83-86. https://doi.org/10.1016/0012-821X(67)90104-5
  8. Gentner W., Lippolt H. J. and Schaeffer O. A., 1963, Argon-Bestimmungen an Kaliummineralien-XI. Die Kalium-Argon-Alter der Glaser des Nordlinger Rieses und der bohmischmahrischen Tektite. Geochimica et Cosmochimica Acta, 27, 191-200. https://doi.org/10.1016/0016-7037(63)90058-9
  9. Gentner, W., Storzer, D., Wagner, G.A.. 1969, New fission track ages of tektites and related glasses. Geochimica et Cosmachimica Acta, 33, 1075-1081. https://doi.org/10.1016/0016-7037(69)90063-5
  10. Glass, B.P., 1984, Tektites. Journal of Non-Crystalline Solids, 67, 333-344. https://doi.org/10.1016/0022-3093(84)90158-3
  11. Glass, B.P., Baker, R.N., Storzer, D., Wagner, G.A., 1973, North American microtekitites from the Caribbean Sea and their fission track ages, Earth & Planetary Science Letter, 19, 184-192. https://doi.org/10.1016/0012-821X(73)90113-1
  12. Glass, B.P., Muenow, D.W., Bohor, B.F., Meeker, G.P., 1997, Fragmentation and hydration of tektites and microtektites. Meteoritics & Planetary Sciences, 32, 333-341. https://doi.org/10.1111/j.1945-5100.1997.tb01276.x
  13. Izett, G. A. and Obradovich, J. D., 1992, Laser-fusion $^{40}Ar/^{39}Ar$ ages of Australasian tektites (abstract). Lunar and Planetary Science, 23, 593-594.
  14. Kim, W.S., 2007. Gemological comparison between Gwangdong tektite and Baikdusan obsidian. Journal of Mineralogical Society of Korea, 20, 181-190 with English Abstract.
  15. King, E.A., 1976, Space Geology: an introduction, John Wiley & Sons, New York, 349p.
  16. Koeberl, C., 1990, The geochemistry of tektites: An overview. Tectonophysics, 171, 405-422. https://doi.org/10.1016/0040-1951(90)90113-M
  17. Koeberl, C., 1994, Tektite origin by hypervelocity asteroidal or cometary impact: Target rocks, source craters, and mechanisms. Basins of the Rio Grande Rift: Structure, Stratigraphy, and Tectonic Setting (Keller, G. R. and Cather, S. M., eds.), Geological Society of America Special Paper, 293, 133-151.
  18. Koeberl, C., BottomLey, R., Glass, B. P. and Storzer, D., 1997, Geochemistry and age of Ivory Coast tektites and microtektites. Geochimica et Cosmochimica Acta, 61, 1745-1772. https://doi.org/10.1016/S0016-7037(97)00026-4
  19. Lee, S-G., Kim, T., Han, S., Kim, H-C., Lee, H-M., Tanaka, T., Lee, S-R., Lee, J-I., 2014, Effect of zircon on rareearth element determination of granitoids by ICP-MS. Journal of the Petrological Society of Korea, 23, 337-349. https://doi.org/10.7854/JPSK.2014.23.4.337
  20. Lee, S-G., Kim, T., Tanaka, T., Lee, S-R., Lee, J-I., 2016, Effect on the Measurement of Trace Element by Pressure Bomb and Conventional Teflon Vial Methods in the Digestion Technique Journal of the Petrological Society of Korea, 25, 1-13. https://doi.org/10.7854/JPSK.2016.25.1.1
  21. Lee, Y-T., Chen, J-C., Ho, K-S., Juang, W-S., 2004, Geochemical studies of tektites from East Asia. Geochemical Journal, 38, 1-17. https://doi.org/10.2343/geochemj.38.1
  22. Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochemical Journal, 9, 183-184. https://doi.org/10.2343/geochemj.9.183
  23. Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine structure of mutually normalized rare earth patterns of chondrites. Geochimica et Cosmochimica Acta, 37, 239-248. https://doi.org/10.1016/0016-7037(73)90131-2
  24. McDonough, W. F. and Sun, S.-s., 1995, The composition of the Earth. Chemical Geology, 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  25. O'Keefe, J. A., 1976, Tektites and Their Origin. Elsevier, Amsterdam, 254 pp.
  26. O'Keefe, J. A., 1994, The origin of tektites. Meteoritics, 29, 73-78. https://doi.org/10.1111/j.1945-5100.1994.tb00655.x
  27. Schort, N.M., 1975, Planetary Geology, Prentice-Hall Ins. 43-44.
  28. Schwarz, W.H., Lippolt, H.J., 2002, Coeval argon-40/argon-39 ages of moldavites from the Bohemian and Lusatian strewn fields. Meteoritics & Planetary Science, 37, 1757-1763. https://doi.org/10.1111/j.1945-5100.2002.tb01161.x
  29. Schwarz, W.H., Trieloff, M., Bollinger, K., Gantert, N., Fernandes, V.A., Meyer, H-P., Povenmire, H., Jessberger, E.K., Guglielmino, M., Koeberl, C., 2016, Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago. Geochimica et Cosmochimica Acta, 178, 307-319. https://doi.org/10.1016/j.gca.2015.12.037
  30. Storzer, D., Wagner, G.A., 1971, Fission tracks ages of North American tektites. Earth and Planetary Science Letter, 10, 435-444. https://doi.org/10.1016/0012-821X(71)90093-8
  31. Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell, London, 312 p.
  32. Zahringer J., 1963, K-Ar measurements of tektites. In Radioactive Dating. International Atomic Energy Agency, Vienna, Austria, pp. 289-305.