DOI QR코드

DOI QR Code

마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems

  • 오창환 (전북대학교 지구환경과학과) ;
  • 이승환 (전북대학교 지구환경과학과) ;
  • 이보영 (전북대학교 지구환경과학과)
  • Oh, Changwhan (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Lee, Seunghwan (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Lee, Boyoung (Department of Earth and Environmental Sciences, Chonbuk National University)
  • 투고 : 2017.08.14
  • 심사 : 2017.09.23
  • 발행 : 2017.09.30

초록

마이산을 포함한 진안분지는 영남육괴 북쪽 경계 중앙부에 위치하고 있으며 이 지역의 기반암은 고원생대 편마암과 이를 관입한 중생대 화강암으로 백악기 이전에 지표로 노출되었다. 진안분지는 백악기에 영동-광주 단층대를 따라 일어난 좌수향 주향이동단층에 의해 형성된 인리형 분지이며 마이산은 진안분지 내의 경사가 급했던 분지 동쪽 경계부에 퇴적된 역암으로 구성된 산이다. 마이산 봉우리는 말 귀의 형상을 보이며 역암 절벽에 타포니가 발달한 특이한 지형을 보여주고 있다. 진안분지를 형성시킨 단층은 지하 깊은 곳까지 연결됨으로서 200 km 깊이에서 형성된 마그마가 지표로 분출하여 진안분지 내와 그 주변에 활발한 화산 활동을 일으켰다. 그 결과 마이산 주변에는 화산폭발에 의해 형성된 화산쇄설암으로 구성된 천반산, 화산분출시 마그마가 관입한 암경으로 구성된 구봉산 그리고 화산 분출시 분출되어 흐른 용암에 의해 형성된 운일암 반일암등이 특이 지형을 형성하며 나타난다. 그리고 진안분지와 주변 화산암이 형성된 이후 진안분지와 그 주변 지역이 융기하여 마이산을 포함한 주변 명산들을 형성하였다. 융기 시기는 정확히 알 수는 없지만 대략 69-38 Ma경으로 추측된다. 이때 추가령에서 무주와 진안을 지나 함평으로 연결되는 노령산맥이 형성되었을 것으로 추정되며, 이로 인해 금강과 섬진강 수계가 나뉘어지고 갈라진 수계에 의해 쉬리의 종이 분화되었다. 또한 북북서 방향으로 발달한 운장산에 의해 금강과 만경-동진강 수계가 나뉘어졌다. 이로 인해 마이산과 그 주변 지역에는 다양한 생태계가 조성되었으며 동시에 마이산에는 특이한 암상과 관련된 다양한 문화, 역사 자원이 존재한다. 따라서 마이산과 주변 지역은 지질유산을 중심으로 생태, 문화, 역사가 잘 어우러진 지질 관광이 성공적으로 개발될 수 있는 지역으로 국가지질공원 및 세계 지질공원으로서의 가능성이 높다.

The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

키워드

참고문헌

  1. Chang, H.W., Turek, A. and Kim, C.B., 2003, U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraint for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochemical Journal, 37, 471-491. https://doi.org/10.2343/geochemj.37.471
  2. Cho, H.S., Kim, M.C., Kim, H.J. and Son, M., 2014, Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field, Journal of Petrological Society of Korea, 23, 75-103. https://doi.org/10.7854/JPSK.2014.23.2.75
  3. Choi, G.Y., 2004, Native cultural dictionary of Jinan County. Jinan Cultural Center
  4. Choi, G.Y., 2010, Misan. Jinan Cultural Center
  5. Choi, T. and Lee, Y.I., 2011. Thermal histories of Cretaceous basins in Korea: Implications for response of the East Asian continental margin to subduction of the Paleo-Pacific Plate. Island Arc 20, 371-385. https://doi.org/10.1111/j.1440-1738.2011.00771.x
  6. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view, Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  7. Dorsey, R.J., Umhoefer, P.J. and Renne, P.R., 1995. Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto Basin, Baja-California-sur, Mexico. Sediment. Geol. 98, 181-204. https://doi.org/10.1016/0037-0738(95)00032-4
  8. Heo, C.H. and Choi, S.H., 2007, A Study on the Development of Geological and Geomorphological Landscape Resources to Promote Tourism Geology: A Case Study. in Taean Seashore National Park. Journal of The Korean Earth Science Society, 28, 75-86 https://doi.org/10.5467/JKESS.2007.28.1.075
  9. Hong, M.S., Yoon, S. and Gil, T.J., 1966, Geological report of the Galdam sheet (1:50,000). Korea Institute of Geology, Mining and Materials, 5 p (in Korean with English abstract).
  10. Hong, S.H. and Yun, W., 1993, Geological report of the Changkye sheet (1:50,000), Korea institute of geology, Mining and Materials
  11. Hwang, I.G., Chough, S.K., Hong, S.W. and Choe, M.Y., 1995. Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea . Sediment. Geol. 98, 147-179. https://doi.org/10.1016/0037-0738(95)00031-3
  12. Jeon, Y.G., 2010, Geotourism in Korea. Journal Of The Korean Geomorphological Association, 17, 53-69.
  13. Jopling, A., 1964. Laboratory study of sorting processes related to flow separation. J. Geophys. Res. 69, 3403-3418. https://doi.org/10.1029/JZ069i016p03403
  14. Kim, M.D., 2015, The characteristics of volcanic rocks and detrital zircon age of sedimentary rocks in the Cretaceous Jinan Basin, Master thesis, Chonbuk National University, Jeonju, 63 p.
  15. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precambrian Research, 122, 235-251. https://doi.org/10.1016/S0301-9268(02)00213-9
  16. Kim, J.H. and Lee, I.K., 1973, Geological report of the Yongdam sheet (1:50,000). Korea Institute of Geology, Mining and Materials, 7 p (in Korean with English abstract).
  17. Kim, K.B., Choi, W.C., Hwang, J.H. and Kim, J.H., 1984, Geological report of the Osu sheet (1:50,000). Korea Institute of Geology, Mining and Materials, 7 p (in Korean with English abstract).
  18. Kim, N., Cheong, C.S., Park, K.H., Kim, J. and Song, Y.-S., 2012, Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research, 21, 865-875. https://doi.org/10.1016/j.gr.2011.10.003
  19. Kwon, Y.W., Oh, C.W. and Kim, H.S., 2003, Granulitefacies metamorphism in the Punggi area, northeastern Yeongnam Massif, Korea and its tectonic implications for east Asia. Precambrian Research, 122, 253-273. https://doi.org/10.1016/S0301-9268(02)00214-0
  20. Lee, D.W., 1999, Strike-slip fault tectonics and basin formation during the Cretaceous. The Island Arc, 8, 218-231. https://doi.org/10.1046/j.1440-1738.1999.00233.x
  21. Lee, S.S., 2004, On the study of origin and development of Tafoni at Mt. MAI, KOREA. Master thesis, Chonbuk National University, Jeonju, 94 p.
  22. Lee, S.H., 2017, The time of sedimentation and volcanic activity of the Jinan Basin and change of magma chamber depth during formation of the Baekdu volcano. Master thesis, Chonbuk National University, Jeonju, 141 p.
  23. Lee, D.S. and Nam, K.S., 1969, Geological report of the Janggi-Ri sheet (1:50,000). Korea Institute of Geology, Mining and Materials, 7 p (in Korean with English abstract).
  24. Lee, S.H. and Chough, S.K., 1999, Progressive changes in sedimentary facies and stratal patterns along the strikeslip margin, northeastern Jinan Basin (Cretaceous), Southwest Korea: implications for differential subsidence. Sedimentary Geology, 123, 81-102. https://doi.org/10.1016/S0037-0738(98)00087-6
  25. Lee, S., Sagong, H., Choi, J., Moon, Y., Lee, M., Kim, E., Choi, D., Lee, K. and Cho, H., 2009, Concepts and Implications of UNESCO Geoparks. Policy report 2009-8, Korea Environment Institute, 139 p.
  26. Lee, S.G., Shin, S,C., Jin, M.S., Ogasawara, M. and Yang, M.K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precambrian Research, 139, 101-120. https://doi.org/10.1016/j.precamres.2005.06.006
  27. Lee, S.G., Asahara, Y., Tanaka, T., Kim, N.H., Kim, K.H., Yi, K., Masuda, A. and Song, Y.S., 2010, La-Ce and Sm-Nd isotopic systematics of early Proterozoic leucogranite with tetrad REE pattern. Chemical Geology, 276, 360-373. https://doi.org/10.1016/j.chemgeo.2010.07.003
  28. Lee, Y.S., Han, H.C., Hwang, J.H., Kee, W.S. and Kim, B.C., 2011, Evidence for significant clockwise rotations of the Korean Peninsula during Cretaceous. Gondwana Research, 20, 904-918. https://doi.org/10.1016/j.gr.2011.05.002
  29. Lee, Y.Y., 1992, Stratigraphy, depositional environments, and evolution of the cretaceous Chinan basin. Ph.D thesis, Seoul National University, Seoul, 287 p.
  30. Noh, B.S., Ryang, W.H. and Cho, K.S., 2009, The Responses of Elementary Teachers and the Development of Teaching Materials for Geological Fieldwork in the Area of Mai Mountain. Journal of Korean Earth Science Society, 30, 869-882. https://doi.org/10.5467/JKESS.2009.30.7.869
  31. Oh, C.W., Lee, B.C., Lee, S.H., Kim, M.D., Lee, B.Y. and Choi, S.H., 2016, The tectonic evolution and important geoheritages in the Jinan and Muju area, Jeollabuk-do. Journal of the Geological society of Korea, 52, 709-738. https://doi.org/10.14770/jgsk.2016.52.5.709
  32. Ryu, I.-C. and Kim, T.-H., 2007, Stratigraphy of the Kachi-1 Well, Kunsan Basin, Offshore Western Korea. Econ. Environ. Geol., 40, 473-490.
  33. Park, J.W. and Lee, Y.I., 1997. Lithostratigraphic revision of the Cretaceous Muju Basin, Korea. Journal of the Geological Society of Korea, 33, 65-77.
  34. Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C.J. and Norry M.J. (eds.), Continental basalts and mantle xenoliths. Shiva, Nantwich, 230-249.
  35. Pearce, J.A. and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science LEtters, 19, 290-300. https://doi.org/10.1016/0012-821X(73)90129-5
  36. Ryang, W.H., 2013. Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. Journal of the Geological Society of Korea, 49, 31-45.
  37. Shin, S.C. and Jin, M.S. 1995. Isotope Age Map of Plutonic Rocks in Korea. Korea Institute of Geology, Mining and Materials, Daejeon.
  38. Simon, M.P., 1991, The behaviour and influence of fluids in subduction zones-Numerical simulation of subduction zone pressure-temperature-time paths: constraints on fluid production and arc magmatism, Philosophical transactions of the royal society, 335.
  39. Song, H.-Y. and Bang, I.-C., 2015, Coreoleuciscus aeruginos (Teleostei: Cypriniformes: Cyprinidae), a new species from the Seomjin and Nakdong rivers, Korea. Zootaxa, 3931, 140-150. https://doi.org/10.11646/zootaxa.3931.1.10
  40. Stanley, K.O. and Surdam, R.L., 1978. Sedimentation on the front of Gilbert-type deltas, Washakie Basin, Wyoming. J. Sediment. Petrol., 48, 557-573.
  41. Tatsumi, Y. and Eggins S., 1995, Subduction zone magmatism, Blackwell, Oxford, 211 p.
  42. Wang, Y. and Zhou, S., 2005, Ar/Ar dating constraints on the high-angle normal faulting along the southern segment of the Tan-Lu fault system: An implication for the onset of eastern China rift-systems. Journal of Asian Earth Sciences, 34, 51-60.
  43. Woo, K.S., 2014, Qualification and prospect of national and global geoparks in Korea. Journal of the Geological Society of Korea. Journal of the Geological Society of Korea, 50, 3-19.
  44. Yi, S.H., Yun, H.S. and Lee, J.D., 1998, Palynofacies of the sansudong formation (lower cretaceous), Jinan Basin, Korea. Journal of Paleont. Society of Korea, 14, 1-13.
  45. Yin, A. and Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Journal of Annual Review, Earth Planetary Science 28, 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
  46. Yin, A. and Chen, Y.J., 2004. Primary review on the Cenozoic tectonic evolution of the Asian continent. In Environment, Natural Hazards, and Global Tectonics of the Earth (eds. Chen, Y.J.), Higher Education Press, Beijing, 97-133 (in Chinese).
  47. You, G.J., 2016. A study on the status and conservation of the Korea National Geopark. Journal of Photo Geography, 26, 39-56.
  48. You, G.J. and Lee, S.K., 2013, Preliminary Study For Geotourism -Focused On Jeju Geopark With Degree Centrality In Social Network Analysis-. Journal of Photo Geography, 23, 49-64.
  49. Yoon, K.-H. and Kim, N.-J., 2015, The role and Meaning of Geotourism from the Perspective of National Geoparks Appoinment. Journal of Tourism Studies, 27, 53-82.