DOI QR코드

DOI QR Code

A Simple Confocal Microscopy-based Method for Assessing Sperm Movement

  • Kim, Sung Woo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Min Su (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Chan-Lan (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Hwang, In-Sul (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Jeon, Ik Soo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
  • Received : 2017.08.29
  • Accepted : 2017.09.07
  • Published : 2017.09.30

Abstract

In the field of reproductive medicine, assessment of sperm motility is a key factor for achieving successful artificial insemination, in vitro fertilization, or intracellular sperm injection. In this study, the motility of boar sperms was estimated using real-time imaging via confocal microscopy. To confirm this confocal imaging method, flagellar beats and whiplash-like movement angles were compared between fresh and low-temperature-preserved ($17^{\circ}C$ for 24 h) porcine sperms. Low-temperature preservation reduced the number of flagellar beats from $11.0{\pm}2.3beats/s$ (fresh sperm) to $5.7{\pm}1.8beats/s$ and increased the flagellar bending angle from $19.8^{\circ}{\pm}13.8^{\circ}$ (fresh) to $30.6^{\circ}{\pm}15.6^{\circ}$. These data suggest that sperm activity can be assessed using confocal microscopy. The observed motility patterns could be used to develop a sperm evaluation index and automated confocal microscopic sperm motility analysis techniques.

Keywords

References

  1. Amann RP (1989) Can the fertility potential of a seminal sample be predicted accurately? J Androl 10:89-98. https://doi.org/10.1002/j.1939-4640.1989.tb00066.x
  2. Amann RP, Wabersk D (2014) Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 81:5-17. https://doi.org/10.1016/j.theriogenology.2013.09.004
  3. Amelar RD, Dubin L, Schoenfeld C (1973) Semen analysis. An Office technique. Urology 2:607-611.
  4. Barros C, Fujimoto M, Yanagimachi R (1973) Failure of zona penetration of hamster spermatozoa after prolonged preincubation in a blood serum fraction. J Reprod Fertil 35:89-95. https://doi.org/10.1530/jrf.0.0350089
  5. Betancourt M, Resendiz A, Fierro ECYR (2006) Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assistedsemen analysis (CASA) in vitro. Reprod Toxicol 22:508-512. https://doi.org/10.1016/j.reprotox.2006.03.001
  6. Bonilla E, Xu EY (2008) Identification and characterization of novel mammalian spermatogenic genes conserved from fly to human. Mol Hum Reprod 14:137-142. https://doi.org/10.1093/molehr/gan002
  7. Brokaw CJ, Josslin R, Bobrow L (1974) Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun 58:795-800. https://doi.org/10.1016/S0006-291X(74)80487-0
  8. Calhim S, Immler S, Birkhead TR (2007) Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS ONE 2(5):e413. https://doi.org/10.1371/journal.pone.0000413
  9. Coetzee K, Kruger TE, Lombard CJ (1999) Repeatability and variance analysis on multiple computer-assisted (IVOS) sperm morphology readings. Andrologia 31:163-168. https://doi.org/10.1046/j.1439-0272.1999.00257.x
  10. Cummins JM (1982) Sperm size, body mass, and reproduction in mammals. In: Andre J, editor. The Sperm Cell. The Hague, Martinus Nijholf, pp 395-398.
  11. David I, Kohnke P, Lagriffoul G, Praud O, Plouarboue F, Degond P, Druart X (2015) Mass sperm motility is associated with fertility in sheep. Anim Reprod Sci 161:75-81. https://doi.org/10.1016/j.anireprosci.2015.08.006
  12. Eisenbach M (1999) Sperm chemotaxis. Rev Reprod 4:56-66. https://doi.org/10.1530/ror.0.0040056
  13. Farrel PB, Presicce GA, Brockett CC, Foote RH (1998) Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49:871-879. https://doi.org/10.1016/S0093-691X(98)00036-3
  14. Feldmann J, Nelson RW (1996) Canine and feline endocrinology and reproduction. Edited by W.B. Saunders, Philadelphia, pp. 718-733.
  15. Fetterlof PM, Rogers BJ (1990) Prediction of human sperm penetrating ability using computerized motion parameters. Mol Reprod Dev 27:326-331. https://doi.org/10.1002/mrd.1080270406
  16. Foote RH, Henderson CR, Bratton RW (1951) Some biases to consider in measuring fertility in artificial insemination. J Dairy Sci 34:490.
  17. Holt C, Holt WV, Moore HD, Reed HC, Curnock RM (1997) Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: Results of two fertility trials. J Androl 18:312-323.
  18. Immler S, Pryke SR, Birkhead TR, Griffith SC (2010) Pronounced within-individual plasticity in sperm morphometry across social environments. Evolution 64:1634-1643. https://doi.org/10.1111/j.1558-5646.2009.00924.x
  19. King GJ, Macpherson JW (1973) A comparison of two methods for boar semen collection. J Anim Sci 36:563-565. https://doi.org/10.2527/jas1973.363563x
  20. Kozdrowski R, Dubiel A, Bielas W, Dzieciol M (2007) Two protocols of cryopreservation of goat semen with the use of computer-assisted semen analysis system. Acta Veterinaria Brno 76:601-604. https://doi.org/10.2754/avb200776040601
  21. Lavara R. Moce E, Lavara F, De Castro MPV, Vincente JS (2005) Do parameters of seminal quality correlate with the results of on-farm inseminations in rabbits? Theriogenology 64:1130-1141. https://doi.org/10.1016/j.theriogenology.2005.01.009
  22. Menkveld R, Holleboom CA, Rhemrev JP. (2011) Measurement and significance of sperm morphology. Asian J Androl 13:59-68. https://doi.org/10.1038/aja.2010.67
  23. Morales PK, Overstreet JW (1988) The relationship between the motility and morphology of spermatozoa in human semen. J Androl 9:241-247. https://doi.org/10.1002/j.1939-4640.1988.tb01045.x
  24. Patel DV, McGhee CN (2007) Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review. Clin Experiment Ophthalmol 35:71-88. https://doi.org/10.1111/j.1442-9071.2007.01423.x
  25. Phillips DM (1972) Comparative analysis of mammalian sperm motility. J Cell Biol 53:561-573. https://doi.org/10.1083/jcb.53.2.561
  26. Rikmenspoel R (1965) The tail movements of bull spermatozoa. Observations and model calculations. Biophys J 5:365-392. https://doi.org/10.1016/S0006-3495(65)86723-6
  27. Smith KD, Rodriguez-Rigau LJ, Steinberger E (1977) Relation between indices of sperm analysis and pregnancy rate in infertile couples. Fertil Steril 28:1314-1319. https://doi.org/10.1016/S0015-0282(16)42976-6
  28. Suttle JM, Moore HDM, Peirce EJ, Breed WG (1988) Quantitative studies on variation in sperm head morphology of the hopping mouse, Notomys alexis. J Exp Zool 247:166-171. https://doi.org/10.1002/jez.1402470208
  29. Verstegen J, Iguer-Ouada M, Onclin K (2002) Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57:149-179. https://doi.org/10.1016/S0093-691X(01)00664-1
  30. Vyt P, Maes D, Rijsselaere T, Dejonckheere E, Castryck F, Soom AV (2004) Motility Assessment of porcine spermatozoa: A comparison of methods. Reprod Dom Anim 39:447-453. https://doi.org/10.1111/j.1439-0531.2004.00538.x
  31. Ward PI (1998) Intraspecific variation in sperm size characters. Heredity 80:655-659. https://doi.org/10.1046/j.1365-2540.1998.00401.x
  32. Yoshida M, Yoshida K (2011) Sperm chemotaxis and regulation of flagellar movement by $Ca^{2+}$. Mol Hum Repord 17:457-465. https://doi.org/10.1093/molehr/gar041